

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO E DIFESA DEL SUOLO E DELLA COSTA,PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

PIANO DI TUTELA DELLE ACQUE

D. Lgs. 3 Aprile 2006, n. 152 e s.m.i.

R1.3	ТІТОLО
SCALA	RELAZIONE GENERALE
	IL PIANO DI TUTELA DELLE ACQUE
CODICE DOCUMENTO RGS03	QUADRO CONOSCITIVO
FILE QUADRO_CONOSCITIVO	

PER LA REGIONE ABRUZZO

Servizio Qualità delle Acque –Ufficio Qualità delle Acque

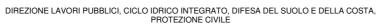
Dott.sa Sabrina DI GIUSEPPE - Responsabile Ufficio Qualità Acque

Stefano SALSO - Ufficio Qualità Acque

Dott.sa Patrizia VIGNINI – Collaboratore Esterno

Ing. Pierluigi CAPUTI - Direttore Regionale

Dott. Luigi DEL SORDO – Dirigente del Servizio


Prof. Roberto VOLPE – Consulente Esterno

PROGETTAZIONE Associazione Temporanea di Imprese (A.T.I.):

2	OTTOBRE 2012	REVISIONE PER APPROVAZIONE	Servizio Qualità delle Acque	Prof. P. B. Celico	
1	FEBBRAIO 2010	REVISIONE PER ADOZIONE	Servizio Acque e Demanio Idrico	Prof. P. B. Celico	
0	APRILE 2008	EMISSIONE DEFINITIVA	Geol. F. Di Girolamo; Dott.ssa R. Di Pierro; Ing. A. Palozzo Dott.ssa Sabrina Di Giuseppe; Dott.ssa Tiziana di Lorenzo; Dott.ssa Patrizia Vignini; Ing. Giuseppe Venturini	Prof. P. B. Celico	
REV	DATA	MOTIVO	MOTIVO REDATTO		

SERVIZIO QUALITA' DELLE ACQUE

INDICE

IL PIANO DI TUTELA DELLE ACQUE	1
IL FIANO DI TOTELA DELLE ACQUE	1
1. INDIVIDUAZIONE DEI CORPI IDRICI OGGETTO DEL PIANO DI TU ACQUE	1
1.1 Individuazione dei corsi d'acqua superficiali significativi e di interes e dei canali significativi, delle acque marino-costiere	sse, dei laghi 1
1.1.1 Individuazione dei corsi d'acqua superficiali significativi	1
1.1.2 Individuazione dei corsi d'acqua superficiali di interesse ambienta d'acqua superficiali potenzialmente influenti sui corsi d'acqua significativi marino-costiere	
1.1.3 Individuazione dei laghi naturali significativi	5
1.1.4 Individuazione delle acque marino costiere significative	5
1.1.5 Individuazione delle acque di transizione significative	5
1.1.6 Individuazione dei canali e laghi artificiali significativi e di interesse	5
${\bf 1.2}\ \ Individuazione\ dei\ corpi\ idrici\ sotterranei\ significativi\ e\ di\ interesse$	7
1.2.1 Caratterizzazione idrogeologica del territorio	7
1.2.2 Definizione di corpo idrico sotterraneo	19
1.2.3 Identificazione dei corpi idrici sotterranei significativi	25
1.2.4 Identificazione dei corpi idrici sotterranei di interesse	28
 INDIVIDUAZIONE PRELIMINARE DEL CORPO IDRICO SUPER RIFERIMENTO Individuazione dei Corpi Idrici di Riferimento nel territorio regionale 	30
FUNZIONALE	STINAZIONE 36
3.1 Acque dolci superficiali destinate alla produzione di acqua potabile	36
3.2 Acque destinate alla balneazione	37
3.3 Acque dolci idonee alla vita dei pesci	
	37
3.4 Acque destinate alla vita dei molluschi	37 42
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA	42 LL'ATTIVITÀ
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI	42 LL'ATTIVITÀ RANEE43
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici	42 LL'ATTIVITÀ RANEE43 44
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici	42 LL'ATTIVITÀ RANEE43 44
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo	42 LL'ATTIVITÀ RANEE 43 44 44 48
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico	42 LL'ATTIVITÀ RANEE43 44 44 48 48
4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo	42 LL'ATTIVITÀ RANEE 43 44 44 48 48
 PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo Valutazione delle pressioni e degli impatti esercitati dai carichi origine civile, industriale, zootecnica ed agricola 	42 LL'ATTIVITÀ RANEE 43 44 48 48 49 antropici di 51
 PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo 4.2 Valutazione delle pressioni e degli impatti esercitati dai carichi origine civile, industriale, zootecnica ed agricola 4.2.1 Stima dei carichi potenziali ed effettivi di origine civile ed industriale 	42 LL'ATTIVITÀ RANEE 43 44 48 48 49 antropici di 51
 PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo Valutazione delle pressioni e degli impatti esercitati dai carichi origine civile, industriale, zootecnica ed agricola 	42 LL'ATTIVITÀ RANEE 43 44 48 48 49 antropici di 51
 PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo Valutazione delle pressioni e degli impatti esercitati dai carichi origine civile, industriale, zootecnica ed agricola 4.2.1 Stima dei carichi potenziali ed effettivi di origine civile ed industriale 4.2.2 Pressioni antropiche dovute ai carichi di origine industriale e civile - A 	AZ LL'ATTIVITÀ RANEE 43 44 48 48 49 antropici di 51 51 Attivazione del
 PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DA ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERI 4.1 Descrizione degli aspetti socio - economici 4.1.1 Aspetti demografici 4.1.2 Comparto industriale e produttivo 4.1.3 Comparto zootecnico 4.1.4 Comparto agricolo 4.1.4 Comparto agricolo 4.2 Valutazione delle pressioni e degli impatti esercitati dai carichi origine civile, industriale, zootecnica ed agricola 4.2.1 Stima dei carichi potenziali ed effettivi di origine civile ed industriale 4.2.2 Pressioni antropiche dovute ai carichi di origine industriale e civile - Amonitoraggio finalizzato al controllo delle sostanze pericolose 	42 LL'ATTIVITÀ RANEE 43 44 48 48 49 antropici di 51 51 Attivazione del 64

Proger S.p.A. Enel.Hydro D'Appolonia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

4	1.2.6	Stima dei carichi effettivi di origine agricola	69
	l.2.7 drogra	Sintesi dei carichi di origine zootecnica ed agricola incidenti sui singoli bacin afici della Regione Abruzzo	i 70
4.3		odologia di valutazione dello stato quantitativo delle acque superficiali derranee	e 74
4	l.3.1	Considerazioni sullo stato quantitativo delle acque superficiali	74
4	1.3.2	Considerazioni sullo stato quantitativo delle acque sotterranee	79
5.	МО	NITORAGGIO E CLASSIFICAZIONE DEI CORPI IDRICI SUPERFICIALI I	-
J.	_	TERRANEI	81
5.1	Moni	toraggio e classificazione dei corpi idrici superficiali	82
5	5.1.1	Definizione dello stato di qualità ambientale dei corpi idrici superficiali	82
5	5.1.2	Monitoraggio dei corpi idrici superficiali	84
5	5.1.3	Monitoraggio e classificazione dei corsi d'acqua superficiali	84
5	5.1.4	Monitoraggio e classificazione dei laghi	107
5	5.1.5	Monitoraggio e classificazione dei canali artificiali	115
5	5.1.6	Monitoraggio e classificazione delle acque marino-costiere	121
5.2	Moni	toraggio e classificazione dei corpi idrici sotterranei	172
5	5.2.1	Monitoraggio	172
5	5.2.2	Definizione dello stato di qualità ambientale dei corpi idrici sotterranei	188
6 M		ORAGGIO E CLASSIFICAZIONE DELLE ACQUE A SPECIFICA DESTINAZIONI	E 201
5.3		toraggio e classificazione delle acque di balneazione	201
		Attività di monitoraggio	201
		toraggio e classificazione delle acque dolci superficiali idonee alla vita de	ei
	pesc	i	203
5	5.4.1	Attività di monitoraggio	204
5	5.4.2	Risultati	204
5.5	Moni	toraggio e classificazione delle acque destinate alla vita dei molluschi	212
5	5.5.1	Attività di monitoraggio	212
5	5.5.2	Risultati	213
6.	ARE		
6 1		LL'INQUINAMENTO E DI RISANAMENTOsensibili	216
			216
		Scarichi di acque reflue urbane in corpi idrici ricadenti in aree sensibili	217
		e vulnerabili da nitrati di origine agricola	218
		vulnerabili da prodotti fitosanitari e zone vulnerabili alla desertificazione	222
		Zone vulnerabili da prodotti fitosanitari	222
•	5.3.2 Diag		235
0.4		plina delle aree di salvaguardia delle acque superficiali e sotterraneo inate al consumo umano	e 245
6.5		aree richiedenti specifiche misure di prevenzione all'inquinamento e d namento	li 250
e	5.5.1	Aree ad elevata protezione	250
e	5.5.2	Aree di particolare valenza ecosistemica	256
6	5.5.3	Aree di particolare valenza geologico-paesaggistica	259

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

PREMESSA

Il **Piano di Tutela delle Acque** (nel seguito denominato PTA) è lo strumento tecnico e programmatico attraverso cui realizzare gli obiettivi di tutela quali-quantitativa previsti dal D.Lgs. 152/06.

La presente relazione "*Quadro Conoscitivo*" contiene:

- l'individuazione dei corpi idrici oggetto del PTA;
- l'individuazione del corpo idrico di riferimento per l'ecotipo montano;
- l'individuazione dei corpi idrici a specifica destinazione funzionale;
- la descrizione delle modalità utilizzate per una stima delle pressioni e degli impatti significativi esercitati dall'attività antropica sullo stato delle acque superficiali e sotterranee;
- l'individuazione delle reti di monitoraggio e la classificazione dei corpi idrici superficiali e sotterranei;
- la classificazione dei corpi idrici superficiali a specifica destinazione funzionale;
- l'individuazione delle aree richiedenti specifiche misure di tutela quali aree sensibili,
 zone vulnerabili da nitrati di origine agricola e zone vulnerabili da prodotti fitosanitari.

La presente relazione in attuazione dei recenti decreti di recepimento della Direttiva 2000/60/CEE ¹, è integrata dagli elaborati di Piano:

A1.8: "Tipizzazione dei corpi idrici superficiali, dei laghi e delle acque marino costiere ai sensi del DM 131/08"

A1.9: "Individuazione dei corpi idrici superficiali e analisi delle pressioni ai sensi del DM 131/08"

A1.10: "Individuazione dei corpi idrici sotterranei analisi delle pressioni e del livello di rischio ai sensi del D.Lgs 30/2009".

QUADRO_CONOSCITIVO

-

¹ DM Ambiente 16 giugno 2008 n. 131 " Criteri tecnici per la caratterizzazione dei corpi idrici- attuazione art. 75 D.Lgg 152/2006";

D.Lgs 16 marzo 2009, n.30 "Attuazione della Direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento"

DM 14 aprile 2009, n. 56 "Regolamento recante <<Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n 152 recante norme in materia ambientale, predisposto ai sensi dell' articolo 75, comma 3, del decreto legislativo medesimo>>"

DM 8 novembre 2010, n. 260 "Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del D.Lgs 3 aprile 2006, n. 152, recante norme in materia ambienatle, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo".

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La descrizione della metodologia seguita per l'acquisizione e l'elaborazione dei dati è riportata nella Relazione Generale "*Metodologia*".

A completamento della documentazione necessaria alla redazione del PTA sono stati predisposti allegati monografici ("*Bilancio Idrologico e Idrogeologico*", "*Relazione Idrogeologica*", "*Valutazione del Minimo Deflusso Vitale*", ecc.) ed elaborati cartografici.

Le informazioni inerenti l'individuazione e la classificazione dello stato quali-quantitativo dei corpi idrici significativi e di interesse, nonché l'individuazione delle aree richiedenti specifiche misure di tutela e di risanamento sono riportate nel geo-database associato alla cartografia, sviluppato su piattaforma GIS.

La sintesi delle caratteristiche amministrative, geologiche, naturalistiche e idrogeologiche, delle pressioni e degli impatti, dello stato di qualità ambientale e delle misure di tutela per ciascun corpo idrico oggetto del PTA è riportata negli allegati monografici "Schede Monografiche dei Corsi d'acqua Superficiali".

L'analisi su tutto il territorio regionale ha permesso l'identificazione delle misure di tutela ("*Quadro programmatico*") e la definizione delle "*Norme tecniche di attuazione*".

Per una più agevole lettura dei contenuti i riferimenti normativi sono stati evidenziati, in appositi riquadri a sfondo giallo, prima della trattazione dei singoli argomenti ed a seguire sono state riportate le considerazioni e le osservazioni relative a ciascun punto contemplato dalla normativa. I riferimenti agli altri documenti facenti parte del presente Piano di Tutela delle Acque ed alla cartografia prodotta sono stati evidenziati, rispettivamente, in riquadri a sfondo verde ed in riquadri a sfondo azzurro.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1. INDIVIDUAZIONE DEI CORPI IDRICI OGGETTO DEL PIANO DI TUTELA DELLE ACQUE

Ai sensi di quanto previsto nel D.Lgs. 152/06 e s.m.i , si è proceduto all'individuazione dei corpi idrici oggetto del Piano di Tutela delle Acque della Regione Abruzzo. In questo modo sono stati identificati:

- I corpi idrici superficiali (per le diverse categorie di acque: fiumi, laghi/invasi e acque marino-costiere) di cui all'Allegato 3 della Parte Terza al D.Lgs 152/06 come modificato dal DM 131/08;
- I corpi idrici sotterranei di cui all'Allegato 1 alla parte Terza del D.Lgs 152/06 come modificato dal D.Lgs 30/2009 e dal DM 260/2010;
- I corpi idrici altamente modificati e i corpi idrici artificiali di cui all'Allegato 3 della Parte Terza al D.Lgs 152/06 come modificato dal DM 131/08.

Per i dettagli relativi ai criteri, alle modalità ed ai risultati dell'individuazione dei corpi idrici superficiali e sotterranei si rimanda agli elaborati:

- **A1.8:** "Tipizzazione dei corpi idrici superficiali, dei laghi e delle acque marino costiere ai sensi del DM 131/08"
- A1.9: "Individuazione dei corpi idrici superficiali e analisi delle pressioni ai sensi del DM 131/08"
- **A1.10:** "Individuazione dei corpi idrici sotterranei analisi delle pressioni e del livello di rischio ai sensi del D.Lgs 30/2009".

e alle carte di piano allegati agli stessi elaborati.

Considerato che la redazione del presente Piano è iniziata quando era in vigore il D.Lgs 152/99, che prevedeva l'individuazione di corpi idrici "significativi" e ne definiva i criteri di individuazione, si è ritenuto opportuno mantenere anche questa definizione. Sono pertanto individuati, nei paragrafi seguenti:

- i corsi d'acqua superficiali significativi e di interesse:
 - corsi d'acqua superficiali significativi;
 - corsi d'acqua superficiali di interesse ambientale e corsi d'acqua superficiali potenzialmente influenti sui corpi idrici significativi;
- i laghi naturali e artificiali significativi;
- i canali artificiali significativi e di interesse;
- le acque marino-costiere significative;
- i corpi idrici sotterranei significativi e di interesse.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1.1 Individuazione dei corsi d'acqua superficiali significativi e di interesse, dei laghi e dei canali significativi, delle acque marino-costiere

Nei paragrafi seguenti vengono descritti in dettaglio i corsi d'acqua superficiali significativi e di interesse individuati nell'ambito del territorio regionale.

La descrizione della metodologia seguita è riportata nella Relazione Generale, Sezione II, elaborato R1.2 **"Metodologia"**.

1.1.1 Individuazione dei corsi d'acqua superficiali significativi

Sono stati individuati come corsi d'acqua superficiali significativi:

- a) tutti i corsi d'acqua naturali di primo ordine (cioè quelli recapitanti direttamente in mare) il cui bacino imbrifero abbia una superficie maggiore di 200 Km²;
- b) tutti i corsi d'acqua naturali di secondo ordine o superiore il cui bacino imbrifero abbia una superficie maggiore di 400 Km².

Non sono significativi i corsi d'acqua che per motivi naturali hanno avuto portata uguale a zero per più di 120 giorni l'anno, in un anno idrologico medio.

Nella **Tabella 1.1** sono elencati i **corsi d'acqua superficiali significativi** individuati sulla base dei criteri sopra esposti.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 1.1 – Corsi d'acqua superficiali significativi

Corso d'acqua significativo	Codice corso d'acqua	Bacino imbrifero	Recapito del corso d'acqua	Superficie bacino (Km²)	Autorità di bacino
Fiume Tronto	I028TR	Bacino Tronto	Mare	194 ^(*)	Autorità di Bacino del Tronto ⁵
Fiume Tordino	R1303TD	Bacino Tordino	Mare	449	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Vomano	R1304VM	Bacino Vomano	Mare	791 ^(°)	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Fino	R1306FI		F. Saline		Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Tavo	R1306TA	Bacino Fino- Tavo-Saline	F. Saline	619	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Saline	R1306SA	Tavo Samie	Mare		Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Sagittario	R1307SA	Bacino	F. Aterno	613	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Aterno	R1307AT	Aterno	F. Pescara	1939 ^(°°)	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Pescara	R1307PE	Bacino Pescara	Mare	1215 ^(°°°)	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Foro	R1309FR	Bacino Foro	Mare	234	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Aventino	I023VN	Bacino	F. Sangro	437	Autorità di Bacino del Sangro ³
Fiume Sangro	I023SN	Sangro	Mare	1606 (***)(°°°°)	Autorità di Bacino del Sangro ³
Fiume Sinello	R1314SI	Bacino Sinello	Mare	315	Autorità dei Bacini Regionali Abruzzesi ¹
Fiume Trigno	I027TG	Bacino Trigno	Mare	402 (***)	Autorità di Bacino del Trigno – Biferno e Minori, Saccione e Fortore ⁴
Fiume Turano	N010TU	Bacino	F. Tevere	242 ^(**)	Autorità di Bacino del Tevere ²
Fiume Imele	N010IM	Tevere	F. Tevere	346 ^(**)	Autorità di Bacino del Tevere ²
Fiume Liri	N005LR	Bacino Liri	F. Garigliano	310 ^(**)	Autorità di Bacino del Liri-Garigliano- Volturno ²

- (*) La superficie del bacino si riferisce esclusivamente alla porzione ricadente nel territorio della Regione Abruzzo, infatti essa in parte ricade nel territorio delle Regioni Marche e Lazio;
- (**) La superficie del bacino si riferisce esclusivamente alla porzione ricadente nel territorio della Regione Abruzzo, infatti essa in parte ricade nel territorio della Regione Lazio;
- (***) La superficie del bacino si riferisce esclusivamente alla porzione ricadente nel territorio della Regione Abruzzo, infatti essa in parte ricade nel territorio della Regione Molise;
- (°) Superficie comprensiva dei Bacini dei Fiumi Mavone e Leomogna;
- $(\circ\circ)$ Superficie comprensiva dei Bacini dei Fiumi Raio, Vera, Sagittario e Gizio;
- Superficie comprensiva dei Bacini dei Fiumi Nora, Orta e Tirino;
- (°°°°) Superficie comprensiva del Bacino del Fiume Aventino;
- Autorità di Bacino di rilievo regionale istituita con Legge Regionale n. 81 del 16/09/1998;
- Autorità di Bacino di rilievo nazionale istituite ai sensi dell'art. 14 legge 183/89 [la L.183/89 è stata abrogata dal D.Lgs.152/06 (art. 63 e art. 175), tuttavia l'art.170 "Norme transitorie" stabilisce che le autorità di bacino di cui alla L. 183/89 sono prorogate fino all'entrata in vigore del decreto correttivo];
- Autorità di Bacino di rilievo interregionale istituita con Legge regionale della Regione Abruzzo n. 43 del 24/08/2001, in osservanza dell'intesa con la Regione Molise;
- ⁴ Autorità di Bacino di rilievo interregionale istituita con Legge regionale della Regione Abruzzo n. 78 del 16/09/1998, in osservanza dell' intesa raggiunta fra le Regioni Abruzzo, Campania, Molise e Puglia;
- ⁵ Autorità di Bacino di rilievo interregionale istituita con Legge regionale della Regione Abruzzo n. 59 del 16/07/1997, in osservanza dell'intesa raggiunta fra le Regioni Marche, Lazio ed Abruzzo.

I corsi d'acqua superficiali e i relativi bacini sono riportati nell'allegato cartografico **"Carta dei Corsi d'acqua Superficiali e relativi bacini"**, in scala 1:250.000, Tavola 1-1.

I corsi d'acqua superficiali significativi sono riportati nell'allegato cartografico "Carta dei Corsi d'acqua Superficiali Significativi e di Interesse, dei laghi significativi, dei canali

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

artificiali significativi e delle acque marino costiere", in scala 1:250.000, Tavola 1-2.

1.1.2 Individuazione dei corsi d'acqua superficiali di interesse ambientale e dei corsi d'acqua superficiali potenzialmente influenti sui corsi d'acqua significativi o sulle acque marino-costiere

Ai fini del presente piano sono stati monitorati e classificati:

- tutti i corsi d'acqua che, per valori naturalistici e/o paesaggistici o per particolari situazioni in atto, hanno rilevante interesse ambientale;
- tutti i corsi d'acqua che, per il carico inquinante da essi convogliato, possono avere un'influenza negativa rilevante sui corpi idrici significativi.

In **Tabella 1.2** sono elencati i **corsi d'acqua superficiali di interesse ambientale** individuati sulla base dei criteri sopra esposti.

Tabella 1.2 – Corsi d'acqua superficiali di interesse ambientale

Corso d'acqua d'interesse ambientale	Codice corso d'acqua	Elemento di interesse ambientale	Bacino imbrifero	Recapito del corso d'acqua	Superfici e bacino (Km²)	Autorità di bacino
Torrente Castellano	I028CA	S.I.C.: "Montagne gemelle", "Area sommitale della Laga", "Bosco della maltese", "Pietrata–Valle Castellana"; P.N.: Gran Sasso-Monti della Laga;	Bacino Tronto	Fiume Tronto	122 (*)	Autorità di Bacino del Tronto
Fiume Salinello	R1302SL	S.I.C.: "Gole del Salinello", "Montagne gemelle"; P.N.: Gran Sasso-Monti della Laga;	Bacino Salinello	Mare	178	Autorità dei Bacini Regionali Abruzzesi
Fiume Vezzola	R1303VZ	S.I.C.: "Montagne gemelle" ; P.N.: Gran Sasso-Monti della Laga;	Bacino Tordino	Fiume Tordino	71	Autorità dei Bacini Regionali Abruzzesi
Torrente Leomogna	R1304LE	S.I.C.: "Fiume Mavone", "Dorsale Brancastello-Prena-Camicia"; P.N.: Gran Sasso-Monti della Laga;	Bacino	Torrente Mavone	25	Autorità dei Bacini Regionali Abruzzesi
Torrente Mavone	R1304MA	S.I.C.: "Fiume Mavone"; P.N.: Gran Sasso-Monti della Laga;	Vomano	Fiume Vomano	170	Autorità dei Bacini Regionali Abruzzesi
Torrente Piomba	R1305PM	S.I.C.: "Calanchi di Atri"; R.N.: "Calanchi di Atri";	Bacino Piomba	Mare	106	Autorità dei Bacini Regionali Abruzzesi
Fiume Tirino	R1307TI	S.I.C.: "Val Voltino", "Sorgenti e primo tratto del Fiume Tirino", "Monte Bolza", "Monte Picca- Monte di Roccatagliata", "Macchiozze di San Vito e Vallone di San Giacomo", "Campo Imperatore e Monte Cristo"; P.R.: "Sirente-Velino"; P.N.: Gran Sasso-Monti della Laga;		Fiume Pescara	369	Autorità dei Bacini Regionali Abruzzesi
Fiume Orta	R1307OR	S.I.C.: "Addiaccio della Chiesa - Valle Cupa", "Valle dell'Orfento e Valle dell'Orta"; R.N.O.: "dell'Orfento I e II", "Piana Grande della Majella", "Lama Bianca di S.Eufemia a Majella"; M. Le Macchie (?);	Bacino Pescara	Fiume Pescara	164	Autorità dei Bacini Regionali Abruzzesi
Torrente Nora	R1307NO	S.I.C.: "Valle D'Angri e Vallone d'Angora", "Val Voltino"; P.N.: Gran Sasso-Monti della Laga; P.T.A. di Vicoli;		Fiume Pescara	138	Autorità dei Bacini Regionali Abruzzesi
Fiume Osento	R1313ST	S.I.C.: "Lecceta litoranea di Torino di Sangro e foce Fiume", "Monte Pallano", "Boschi riparali del Fiume Osento";	Bacino Osento	Mare	125	Autorità dei Bacini Regionali Abruzzesi

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

REGIONE ABRUZZO

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corso d'acqua d'interesse ambientale	Codice corso d'acqua	Elemento di interesse ambientale	Bacino imbrifero	Recapito del corso d'acqua	Superfici e bacino (Km²)	Autorità di bacino
Fiume Treste	I027TS	S.I.C.: "Fiume Trigno (medio e basso corso)", "Abetina di Castiglione Messer Marino", "Monte Sorbo (M.ti Frentani)", "Gessi di Lentella", "Fiume Treste", "Monte Freddo (M.ti Frentani)", "Bosco Montagna e Bosco Carunchino (M.ti Frentani)".	Bacino Trigno	Fiume Trigno	160	Autorità di Bacino del Trigno – Biferno e Minori, Saccione e Fortore

^(*) La superficie del bacino si riferisce esclusivamente alla porzione ricadente nel territorio della Regione Abruzzo, infatti essa in parte ricade nel territorio della Regione Marche.

In Tabella 1.3 sono, invece, riportati i corsi d'acqua superficiali potenzialmente influenti sui corsi d'acqua significativi o sulle acque marino-costiere, classificati come tali poiché recapitanti in corpi idrici significativi o direttamente in mare.

Tabella 1.3 – Corsi d'acqua superficiali potenzialmente influenti sui corsi d'acqua significativi o sulle acque marino-costiere

Corso d'acqua potenzialmente influente sui corpi idrici significativi	Codice corso d'acqua	Bacino imbrifero	Recapito del corso d'acqua	Superficie bacino (Km²)	Autorità di bacino
Fiume Vibrata	R1301VB	Bacino Vibrata	Mare	107 (*)	Autorità dei Bacini Regionali Abruzzesi
Torrente Cerrano	R1315CR	Bacino Cerrano	Mare	15	Autorità dei Bacini Regionali Abruzzesi
Torrente Raio	R1307RA		Fiume Aterno	260	Autorità dei Bacini Regionali Abruzzesi
Fiume Vera	R1307VE	Bacino Aterno	Fiume Aterno	138	Autorità dei Bacini Regionali Abruzzesi
Fiume Gizio	R1307GI		Fiume Sagittario	254	Autorità dei Bacini Regionali Abruzzesi
Fiume Alento	R1308LN	Bacino Alento	Mare	120	Autorità dei Bacini Regionali Abruzzesi
Fosso Arielli	R1310RL	Bacino Arielli	Mare	41	Autorità dei Bacini Regionali Abruzzesi
Torrente Moro	R1311MR	Bacino Moro	Mare	73	Autorità dei Bacini Regionali Abruzzesi
Torrente Feltrino	R1312FL	Bacino Feltrino	Mare	51	Autorità dei Bacini Regionali Abruzzesi
Torrente Giovenco	N005GV	Bacino Liri	Fiume Liri	148	Autorità di Bacino del Liri- Garigliano-Volturno

^(*)La superficie del bacino si riferisce esclusivamente alla porzione ricadente nel territorio della Regione Abruzzo, infatti essa in parte ricade nel territorio della Regione Marche.

I corsi d'acqua superficiali e i relativi bacini sono riportati nell'allegato cartografico "Carta dei Corsi d'acqua superficiali e relativi bacini", in scala 1:250.000, Tavola 1-1.

I corsi d'acqua superficiali di interesse ambientale e potenzialmente influenti sui corsi d'acqua significativi sono riportati nell'allegato cartografico "Carta dei Corsi d'acqua Superficiali Significativi e di Interesse, dei laghi significativi, dei canali artificiali significativi e delle acque marino costiere", in scala 1:250.000, Tavola 1-2.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROTEZIONE CIVILE

PROGER S.P.A.

ENEL.HYDRO

D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1.1.3 Individuazione dei laghi naturali significativi

Sono considerati significativi i laghi (naturali, aperti o chiusi, naturali ampliati e/o regolati) aventi superficie dello specchio liquido pari a 0,5 Kmg o superiore. Tale superficie è riferita al periodo di massimo invaso.

L'unico lago naturale significativo presente nel territorio regionale risulta essere il Lago di Scanno (AQ), caratterizzato da una superficie dello specchio liquido pari a 0,8 km².

Il lago naturale significativo è riportato nell'allegato cartografico "Carta dei Corsi d'acqua Superficiali Significativi e di Interesse, dei laghi significativi, dei canali artificiali significativi e delle acque marino costiere", in scala 1:250.000, Tavola 1-2.

1.1.4 Individuazione delle acque marino costiere significative

Sono considerate significative le acque marine comprese entro la distanza di 3000 metri dalla costa.

Il limite delle acque marino costiere significative è riportato nell'allegato cartografico "Carta dei Corsi d'acqua Superficiali Significativi e di Interesse, dei laghi significativi, dei canali artificiali significativi e delle acque marino costiere", in scala 1:250.000, Tavola 1-2.

1.1.5 Individuazione delle acque di transizione significative

Sono significative le acque delle lagune, dei laghi salmastri e degli stagni costieri. Le zone di delta ed estuario vanno invece considerate come corsi d'acqua superficiali.

Sul territorio regionale abruzzese non risultano presenti acque di transizione significative.

1.1.6 Individuazione dei canali e laghi artificiali significativi e di interesse

Sono considerati artificiali i laghi o i serbatoi, se realizzati mediante manufatti di sbarramento, e i canali artificiali (canali irrigui o scolanti, industriali, navigabili, ecc...) fatta esclusione dei canali appositamente costruiti per l'allontanamento delle acque reflue urbane ed industriali.

Sono considerati significativi:

- tutti i canali artificiali che restituiscano almeno in parte le proprie acque in corpi idrici naturali superficiali e con portata d'esercizio di almeno 3 m³/s;
- i serbatoi o laghi artificiali il cui bacino di alimentazione sia interessato da attività antropiche che ne possano compromettere la qualità ed aventi superficie dello specchio liquido almeno pari a 1 Km² o con un volume di invaso almeno pari a 5 milioni di m³. Tale superficie è riferita al periodo di massimo invaso.

Nella Tabella 1.4 sono elencati i canali artificiali significativi individuati sulla base dei

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

criteri sopra esposti.

Tabella 1.4 – Canali artificiali significativi (Fonte: "Programma di monitoraggio "Acque superficiali" – Monitoraggio dei canali artificiali – biennio 2004-2006", Regione Abruzzo - ARTA Abruzzo)

Denominazione canale	Codice canale/ stazione	Località	Comune	Bacino imbrifero	Corpo idrico derivato	Corpo idrico recettore	Lunghezza (km)	Tipologia
Canale Enel a San Giacomo (2º salto)	R1304c00301	Fano Adriano	Fano Adriano	Vomano	Vomano	Vomano	12,8	Idroelettrico
Canale Enel a Montorio	R1304c00701	Montorio a Vomano	Montorio a Vomano	Vomano	Vomano	Vomano	17,3	Idroelettrico
Canale Enel alla Centrale di Molina - Aterno	R1307c00101	Molina Aterno	Molina Aterno	Aterno- Pescara	Aterno	Aterno	3,1	Idroelettrico
Canale "Nuovo Azzurro" sul Fiume Tirino	R1307c00301	Valle Cupa	Bussi sul Tirino	Aterno- Pescara	Tirino	Tirino	0,8	Piscicoltura
Canale Soc. Ausimont	R1307c00401	Bussi Officine	Bussi sul Tirino	Aterno- Pescara	Tirino	Tirino	2,6	Industriale
Canale Enel a Bolognano	R1307c00501	Colle Morto	Bolognano	Aterno- Pescara	Pescara	Pescara	9,4	Idroelettrico
Canale Enel ad Alanno	R1307c00601	Petricca	Alanno	Aterno- Pescara	Pescara	Pescara	7,7	Idroelettrico
Canale Enel a Triano	R1307c00701	Triano	Chieti	Aterno- Pescara	Pescara	Pescara	17,2	Idroelettrico
Canale SIRCI a Castel di Sangro ¹	I023c00101	Morgione	Castel di Sangro	Sangro	Sangro	Sangro	-	Idroelettrico
Canale Enel a Villa Santa Maria	I023c00201	Villa Santa Maria	Villa Santa Maria	Sangro	Sangro	Sangro	15,6	Idroelettrico
Canale ACEA alla Centrale S.Angelo	I023c00301	Selva D'Altino	Altino	Sangro	Sangro, Aventino	Sangro	-	Idroelettrico
Canale Enel 2° salto Fiume Liri	N005c00101	Canistro	Civitella Roveto	Liri	Liri	Liri	7,4	Idroelettrico
Canale Enel 3° Salto Fiume Liri	N005c00201	Morino	Morino	Liri	Liri	Liri	13	Idroelettrico
Canale Collettore del Fucino (Loc. Le Paratoie)	N005c00301	Case Incile	Avezzano	Liri	-	-	9,6	Irriguo/ Scolante

¹ L'ubicazione del canale SIRCI non è riportata nella cartografia allegata in quanto non si hanno informazioni a riguardo.

Sono stati monitorati, ai fini del presente Piano, anche i canali indicati nella **Tabella 1.5** che convogliano le acque di ruscellamento, provenienti dai rilievi abruzzesi delle province di L'Aquila e Teramo, in altri canali e laghi artificiali a tipologia idroelettrica. La acque convogliate dagli stessi, raggiungono poi, seppur in maniera indiretta, i corsi d'acqua/laghi significativi.

Tabella 1.5 - Canali artificiali di interesse (Fonte: "Programma di monitoraggio "Acque superficiali" - Monitoraggio dei canali artificiali - biennio 2004-2006", Regione Abruzzo - ARTA Abruzzo)

Denominazione canale	Codice canale/ stazione	Località	Comune	Bacino imbrifero	Corpo idrico derivato	Corpo idrico recettore	Lunghezza (km)	Tipologia
Canale Occidentale della Laga a quota 1350 m.	R1304c00101	Campotosto	Campotosto	Vomano	Tronto	Lago di Campotosto	20.7	Idroelettrico
Canale Orientale della Laga a quota 1350 m.	R1304c00201	Campotosto	Campotosto	Vomano	Vomano, Tordino, Tronto	Lago di Campotosto	22.8	Idroelettrico
Canale Ruzzo Mavone a quota 1100 m.	R1304c00401	Pietracamela	Pietracamela	Vomano	Ruzzo, Mavone, San Giacomo	Vomano	30.5	Idroelettrico
Canale sinistro a quota 400 m. (Fiumicello- Tordino-Vezzola)	R1304c00501	Torricella Sicura	Torricella Sicura	Vomano	Fiumicello, Tordino, Vezzola	Vomano	12.6	Idroelettrico

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Denominazione canale	Codice canale/ stazione	Località	Comune	Bacino imbrifero	Corpo idrico derivato	Corpo idrico recettore	Lunghezza (km)	Tipologia
Canale destro a quota 400 m. (Leomogna- Chiarino-Ruzzo- Mavone)	R1304c00601	Montorio a Vomano	Montorio a Vomano	Vomano	Leomogna, Chiarino, Ruzzo, Mavone	Vomano	11.1	Idroelettrico

Nella **Tabella 1.6** sono elencati i **laghi artificiali significativi** individuati secondo i criteri sopracitati.

Tabella 1.6 – Laghi artificiali significativi

Lago artificiale	Codice lago	Superficie di specchio liquido ⁽ⁱ⁾	Volume di invaso ⁽ⁱⁱ⁾	Bacino imbrifero
Lago di Campostosto	13CP	11,9 Km ²	218 Mm ³	Vomano
Lago di Penne	13PE	1,44 Km ²	9,2 Mm ³	Fino-Tavo-Saline
Lago di Barrea	13BA	1,49 Km²	24,3 Mm ³	Sangro
Lago di Bomba	13BO	3,16 Km ²	83,3 Mm ³	Sangro
Lago di Casoli	13CS	1,15 Km ²	21 Mm ³	Sangro

⁽i) Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, II° anno di monitoraggio a regime maggio 2004 – aprile 2005", Regione Abruzzo – ARTA;

I laghi artificiali significativi e i canali artificiali significativi e di interesse sono riportati nell'allegato cartografico "Carta dei Corsi d'acqua Superficiali Significativi e di Interesse, dei laghi significativi, dei canali artificiali significativi e delle acque marino costiere", in scala 1:250.000, Tavola 1-2.

1.2 Individuazione dei corpi idrici sotterranei significativi e di interesse

Nell'ambito del presente Piano (e nei paragrafi seguenti) è stata realizzata, in primo luogo, la caratterizzazione idrogeologica del territorio a scala regionale. Tale caratterizzazione ha consentito, anche sulla base di quanto definito nel paragrafo 1.2.2, l'individuazione dei corpi idrici sotterranei, significativi e di interesse, ricadenti nel territorio abruzzese.

Per i dettagli relativi ai criteri, alle modalità ed ai risultati dell'individuazione dei corpi idrici sotterranei ai sensi dell'Allegato 1 alla Parte Terza del D.Lgs 152/06, come modificato dal D.Lgs 30/2009 e dal DM 260/2010, si rimanda all' elaborato A1.10: "Individuazione dei corpi idrici sotterranei analisi delle pressioni e del livello di rischio ai sensi del D.Lgs 30/2009".

1.2.1 Caratterizzazione idrogeologica del territorio

La caratterizzazione idrogeologica del territorio è stata realizzata mediante i risultati ottenuti dall'attività conoscitiva.

La descrizione della metodologia seguita è riportata nella Relazione Generale, Sezione II, elaborato R1.2 "Metodologia".

⁽ii) Fonte: www.ise.cnr.it.

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1.2.1.1 Individuazione dei complessi idrogeologici

Il primo passo che si è ritenuto utile effettuare per la caratterizzazione idrogeologica del territorio abruzzese è stato quello di suddividere l'area di interesse in complessi idrogeologici.

Per "complesso idrogeologico" si intendono uno o più termini litologici generalmente simili, caratterizzati da una soddisfacente similitudine stratigrafico-strutturale, aventi una comprovata unità spaziale e giaciturale, un prevalente tipo di permeabilità generalmente comune ed un grado di permeabilità relativa che si mantiene generalmente in un campo di variazione piuttosto ristretto, oltre che una capacità di infiltrazione e di deflusso sotterraneo sostanzialmente omogenei; la dizione "generalmente", aggiunta alla definizione originaria, sta ad indicare che è necessario far riferimento ad una grande elasticità di interpretazione, in quanto si deve sempre tenere in debito conto la scala di lavoro, oltre che gli obiettivi dello studio (ad esempio, un'alternanza di termini litologici costituito da calcari, calcari con selce e marne può essere considerata come un unico "complesso idrogeologico", se si fa riferimento ad uno studio a carattere regionale, mentre deve essere scissa in almeno tre "complessi", se si fa riferimento ad una scala di dettaglio).

Sulla base della "Carta geologica dell'Abruzzo" di Vezzani e Ghisetti, in scala 1:100.000, si è provveduto ad effettuare un'analisi dal punto di vista idrogeologico delle serie e delle formazioni geologiche in essa riportate, le quali, essendo caratterizzate dalla presenza di litotipi che hanno comportamenti nei riguardi della circolazione idrica sotterranea anche sostanzialmente diversi tra loro, sono state raggruppate in funzione delle loro caratteristiche comuni, al fine di facilitare la lettura delle problematiche idrogeologiche del territorio.

In relazione a quanto detto sopra, sono stati individuati i seguenti complessi idrogeologici:

- 1) complesso sabbioso (s);
- 2) complesso detritico (dt);
- 3) complesso fluvio-lacustre (fl);
- 4) complesso sabbioso-conglomeratico (SCg);
- 5) complesso argilloso con intercalazioni sabbioso-conglomeratiche (Ag-SCg);
- 6) complesso conglomeratico-calcareo-sabbioso (CgCS);
- 7) complesso marnoso-argilloso (MAg);
- 8) complesso arenaceo (Ar);
- 9) complesso argilloso-arenaceo-marnoso (AgArM);
- 10) complesso evaporitico (Ev);
- 11) complesso sabbioso-argilloso (SAg);
- 12) complesso conglomeratico-argilloso (CgAg);
- 13) complesso marnoso-calcareo (MC);
- 14) complesso calcareo-marnoso-argilloso (CMAg);
- 15) complesso calcareo-marnoso (CM);
- 16) complesso calcareo-silico-marnoso (CSM);

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- 17) complesso calcareo-marnoso-selcifero (CMS);
- 18) complesso delle argille varicolori (Av);
- 19) complesso calcareo selcifero (CS);
- 20) complesso calcareo (C);
- 21) complesso calcareo-dolomitico (CD);
- 22) complesso dolomitico-calcareo dolomitico (D-CD);
- 23) complesso dolomitico (D).
- 1) COMPLESSO SABBIOSO (s): è costituito da sabbie di duna e di spiagge attuali e antiche (Olocene-Pliestocene sup.).

Il grado di "permeabilità relativa", per porosità, si può considerare alto.

Per quanto concerne la circolazione idrica sotterranea, essendo un deposito ben classato, la falda idrica sotterranea che si genera è basale e unica; il complesso è caratterizzato da interscambi idrici sotterranei di un certo interesse con la falda dell'acquifero alluvionale retrostante; in esso inoltre si individua un equilibrio idrogeologico molto delicato nei riguardi dei naturali rapporti tra acqua dolce (di falda) ed acqua salata di ingressione marina.

Il complesso è caratterizzato da un coefficiente di infiltrazione potenziale alto, anche perché affiora in aree pianeggianti.

2) COMPLESSO DETRITICO (dt): costituito da detriti di versante e di conoide cementati, detrito di falda sciolto, coperture detritico-colluviali, coni di deizione attivi, depositi morenici, accumuli di frana e paleofrane (Olocene-Pliestocene inf.).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" medio-alto, ma variabile, anche in modo sostanziale, a seconda della granulometria dei depositi, della maggiore o minore presenza di matrice, del grado di cementazione.

L'infiltrazione efficace è generalmente elevata, anche perché la morfologia del territorio è generalmente poco acclive ed, in alcuni casi, perché vi si è sviluppata una vegetazione abbastanza rigogliosa.

A causa della sostanziale caoticità che caratterizza la giacitura dei vari litotipi (con lenti più o meno estese e tra loro interdigitate a depositi con differente grado di permeabilità), la circolazione idrica sotterranea è preferenzialmente basale e si esplica secondo "falde sovrapposte" (appartenenti, quasi sempre, ad un'unica circolazione).

3) COMPLESSO FLUVIO-LACUSTRE (fl): è costituito da depositi fluviali, anche terrazzati, e fluvio-glaciali prevalentemente ghiaioso-sabbiosi, da depositi palustri e lacustri prevalentemente argilloso-limoso-sabbiosi e da travertini (Olocene-Pliocene).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" medio, anche se in realtà è variabile, anche in modo sostanziale, da zona a zona in funzione della granulometria dei depositi.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La capacità ricettiva dell'acquifero fluvio-lacustre è complessivamente buona, sia nei confronti dell'alimentazione diretta (fenomeno, questo, molto facilitato dalla morfologia piatta degli affioramenti), sia nei confronti di quella indiretta proveniente dagli acquiferi adiacenti (solo nel caso in cui affiorano termini relativamente più permeabili).

A causa della sostanziale caoticità che caratterizza la giacitura dei vari litotipi (con lenti più o meno estese e tra loro interdigitate a depositi con differente grado di permeabilità), la circolazione idrica sotterranea è preferenzialmente basale e si esplica secondo "falde sovrapposte" (appartenenti, quasi sempre, ad un'unica circolazione).

4) COMPLESSO SABBIOSO-CONGLOMERATICO (SCg): è costituito da depositi sabbiosi e conglomeratici (Pleistocene sup.-Pleistocene inf.).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" alto.

La capacità ricettiva di questo complesso è buona nei confronti dell'alimentazione diretta (fenomeno, questo, molto facilitato dalla morfologia piatta degli affioramenti).

La circolazione idrica sotterranea è condizionata dalla maggiore o minore presenza di matrice e dalla frequenza delle intercalazioni sabbiose. A causa della sostanziale caoticità che caratterizza la giacitura dei vari litotipi (con lenti più o meno estese e tra loro interdigitate a depositi con differente grado di permeabilità), la circolazione idrica sotterranea è preferenzialmente basale e si esplica secondo "falde sovrapposte" (appartenenti, quasi sempre, ad un'unica circolazione).

5) COMPLESSO ARGILLOSO CON INTERCALAZIONI SABBIOSO-CONGLOMERATICO (Aq-SCq):

è costituito da depositi argillosi prevalenti, a luoghi intercalati con sabbie, conglomerati e calcareniti (Pleistocene inf.-Pliocene medio).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" basso e, talora, pressoché nullo.

L'infiltrazione efficace è di entità modesta, a causa della scarsa ricettività complessiva dell'acquifero.

La circolazione idrica sotterranea, molto scarsa, è limitata, quasi esclusivamente, alla fascia alterata superficiale (della profondità di pochi metri). Esiste, quindi, una concordanza pressoché completa tra la morfologia esterna e quella piezometrica.

6) COMPLESSO CONGLOMERATICO-CALCAREO-SABBIOSO (CgCS): è costituito da conglomerati poligenici a matrice arenacea con elementi Liguridi e cristallini, calciruditi, calcareniti organogene, livelli di sabbie e di peliti siltose (Pliocene inf.-Miocene sup.?).

Questo complesso risulta permeabile per porosità e fessurazione ed è caratterizzato da un grado di "permeabilità relativa" medio-alto.

La circolazione idrica sotterranea è condizionata dalla fessurazione e dalla presenza dei termini relativamente meno permeabili; il complesso può dare origine a piccole falde sospese,

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

perenni o temporanee, anche se per lo più svolge, facendo parte della successione carbonatica, il ruolo di trasmissione delle acque di infiltrazione efficace al sottostante substrato carbonatico sede dell'importante falda basale.

7) COMPLESSO MARNOSO-ARGILLOSO (MAg): è costituito da marne argillose emipelagiche con sottili e rari livelli siltitici (Pliocene inf.-Miocene sup.?).

Questo complesso risulta permeabile per porosità e fessurazione ed è caratterizzato da un grado di "permeabilità relativa" basso e, talora, pressoché nullo.

L'infiltrazione efficace è di entità modesta, a causa della scarsa ricettività complessiva dell'acquifero.

La circolazione idrica sotterranea, molto scarsa, è limitata, quasi esclusivamente, alla fascia alterata superficiale (della profondità di pochi metri). Esiste, quindi, una concordanza pressoché completa tra la morfologia esterna e quella piezometrica.

8) COMPLESSO ARENACEO (Ar): è costituito da arenarie, e subordinatamente sabbie, di natura torbiditica (Pliocene inf.-Miocene sup.).

Questo complesso risulta permeabile per porosità e fessurazione ed è caratterizzato da un grado di "permeabilità relativa" medio-basso.

L'infiltrazione efficace è di entità modesta, a causa della bassa ricettività complessiva dell'acquifero.

La circolazione idrica sotterranea è condizionata dalla fessurazione, dalla maggiore porosità della parte superficiale e dalla bassa permeabilità del complesso; esso pertanto è sede di una scarsa circolazione idrica che si sviluppa nella coltre superficiale più alterata del roccia (per alcuni metri).

9) COMPLESSO ARGILLOSO-ARENACEO-MARNOSO (AgArM): è costituito da prevalenti argille marnose con intercalazioni di arenarie torbiditiche e marne argillose (Pliocene inf.-Miocene sup.-Oligocene sup.?).

Questo complesso risulta permeabile per porosità e fessurazione ed è caratterizzato da un grado di "permeabilità relativa" molto basso o pressoché nullo.

L'infiltrazione efficace è di entità modesta, a causa della scarsa ricettività complessiva dell'acquifero.

La circolazione idrica sotterranea, molto scarsa, è limitata, quasi esclusivamente, alla fascia alterata superficiale (della profondità di pochi metri). Esiste, quindi, una concordanza pressoché completa tra la morfologia esterna e quella piezometrica.

Risulta comunque di un certo interesse proprio per la sua scarsa permeabilità perché, sia pure localmente, funge da impermeabile relativo e tampona lateralmente la circolazione idrica basale degli acquiferi carbonatici.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

10) COMPLESSO EVAPORITICO (Ev): è costituito da depositi evaporatici, prevalentemente da gessi (gessoruditi, gessareniti, gessosiltiti), intercalati a calcareniti, micriti, calcari evaporitici, marne, marne calcaree, marne e argille bituminose (Pliocene inf.?-Miocene sup.).

Questo complesso risulta permeabile per porosità e fessurazione ed è caratterizzato da un grado di "permeabilità relativa" basso.

L'infiltrazione efficace è di entità modesta, a causa della scarsa ricettività complessiva dell'acquifero. La circolazione idrica sotterranea è molto frazionata e dà origine ad una moltitudine di piccole sorgenti.

11) COMPLESSO SABBIOSO-ARGILLOSO (SAg): è costituito da un'alternanza sabbiosa-argillosa con livelli arenacei (Miocene sup.).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" medio-basso.

L'infiltrazione efficace è di entità modesta, a causa della bassa ricettività complessiva dell'acquifero.

Questo acquifero dà origine ad una moltitudine di piccole sorgenti essendo la circolazione idrica sotterranea molto frazionata.

12) COMPLESSO CONGLOMERATICO-ARGILLOSO (CgAg): è costituito da brecce calcaree monogeniche in banchi decametrici, a stratificazione indistinta, talora con intercalazioni di argille verdi e grigie (Miocene sup.-Miocene medio).

Questo complesso risulta permeabile per porosità e subordinatamente per fessurazione ed è caratterizzato da un grado di "permeabilità relativa" medio-alto.

La circolazione idrica sotterranea è condizionata dalla fessurazione e dalla presenza dei termini relativamente poco permeabili; il complesso può dare origine a piccole falde sospese, perenni o temporanee, anche se per lo più svolge, facendo parte della successione carbonatica, il ruolo di trasmissione delle acque di infiltrazione efficace al sottostante substrato carbonatico sede dell'importante falda basale.

13) COMPLESSO MARNOSO-CALCAREO (MC): è costituito da marne e marne calcaree, calcari marnosi, con intercalazioni di calcareniti e calciruditi (Miocene sup.-Miocene inf.).

Questo complesso risulta permeabile per fessurazione ed è caratterizzato da un grado di "permeabilità relativa" medio-basso, sia per la presenza di discontinui livelli poco permeabili, sia per il locale riempimento delle fratture con depositi marnoso-argillosi.

La circolazione idrica sotterranea è condizionata dalla fessurazione e dalla presenza dei termini relativamente poco permeabili; il complesso può dare origine a piccole falde sospese, perenni o temporanee, anche se svolge, facendo parte della successione carbonatica, il ruolo di trasmissione delle acque di infiltrazione efficace al sottostante substrato carbonatico sede dell'importante falda basale.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

14) COMPLESSO CALCAREO-MARNOSO-ARGILLOSO (CMAg): è costituito da calcari marnosi in alternanza o con intercalazioni di marne argillose e siltiti, caratterizzate anche da frequenti intercalazioni di calcareniti, calciruditi con selce, marne e argille marnose (Miocene sup.-Oligocene sup.?).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" medio, sia per la presenza di discontinui livelli poco permeabili, sia per il locale riempimento delle fratture con depositi marnoso-argillosi e/o con cataclasite a grana fine. Ciò nonostante, la presenza di una maglia relativamente rada di fessure beanti e carsificate, spesso coincidenti con discontinuità tettoniche, lo rende localmente abbastanza permeabile.

Questo acquifero dà origine ad una moltitudine di piccole sorgenti essendo la circolazione idrica sotterranea molto frazionata.

15) COMPLESSO CALCAREO-MARNOSO (CM): è costituito da calcari, calcari marnosi, marne calcaree (Miocene medio-Giurassico medio).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" medio-alto.

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fessurazione e dal carsismo; anche se il complesso risulta caratterizzato da frequenti interstrati poco permeabili, esso è intensamente fratturato e attraversato da numerosi sistemi di faglie, pertanto è sede di una importante falda basale e di piccole falde sospese, perenni o temporanee.

Il complesso è da ritenere tra gli acquiferi di maggiore interesse del territorio abruzzese, essendo caratterizzato da un CIP² medio-alto e da una notevole estensione degli affioramenti.

16) COMPLESSO CALCAREO-SILICO-MARNOSO (CSM): è costituito da calcari con liste e noduli di selce con intercalazioni di marne e calcari marnosi (Miocene medio-Giurassico inf.).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" medio-alto.

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fessurazione e dal carsismo; anche se il complesso risulta caratterizzato da frequenti interstrati poco permeabili, esso è intensamente fratturato e attraversato da numerosi sistemi di faglie, pertanto è sede di una importante falda basale e di piccole falde sospese, perenni o temporanee.

Il complesso è da ritenere tra gli acquiferi di maggiore interesse del territorio abruzzese, essendo caratterizzato da un CIP medio-alto e da una notevole estensione degli affioramenti.

² C.I.P.: Coefficiente di infiltrazione potenziale

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

17) COMPLESSO CALCAREO-MARNOSO-SECIFERO (CMS): è costituito da calcari marnosi e marne calcaree e argillose, sottilmente stratificate e con livelli di selce; in subordine calcari selciferi (Miocene inf.-Giurassico inf.).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" medio.

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fessurazione e dal carsismo; anche se il complesso risulta caratterizzato da frequenti interstrati poco permeabili, esso è fratturato ed è attraversato da numerosi sistemi di faglie; pertanto è sede di una discreta falda basale e di piccole falde sospese, perenni o temporanee. Il complesso è da ritenere tra gli acquiferi di maggiore interesse del territorio abruzzese, in quanto, anche se caratterizzato da un CIP medio, esso permette la formazione di una discreta falda basale che dà origine ad importanti sorgenti ubicate fuori il territorio regionale.

18) COMPLESSO DELLE ARGILLE VARICOLORI (Av): è costituito da argille scagliose varicolori con intercalazioni di micriti calcaree, calcari marnosi tipo "pietra paesina" e radiolariti, in associazione tettonica con calcari, gessi e calcari evaporitici (Oligocene inf.-Cretacico sup.).

Questo complesso risulta permeabile per porosità ed è caratterizzato da un grado di "permeabilità relativa" molto basso o pressoché nullo.

L'infiltrazione efficace è di entità modesta, a causa della scarsa ricettività complessiva dell'acquifero.

La circolazione idrica sotterranea, molto scarsa, è limitata, quasi esclusivamente, alla fascia alterata superficiale (della profondità di pochi metri). Esiste, quindi, una concordanza pressoché completa tra la morfologia esterna e quella piezometrica.

Risulta comunque di un certo interesse proprio per la sua scarsa permeabilità perché, sia pure localmente, funge da impermeabile relativo e tampona lateralmente la circolazione idrica basale degli acquiferi carbonatici.

19) COMPLESSO CALCAREO SELCIFERO (CS): è costituito da calcari micritici bianchi con liste e noduli di selce nera, in strati sottili alternati a calcareniti torbiditiche (Oligocene-Giurassico sup.).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" elevato.

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, da una rete di fratturazione molto sviluppata ed intersecata da numerosi sistemi di faglie dirette. Esso è sede di una importante falda basale e di piccole falde sospese, perenni o temporanee.

Il complesso è da ritenere tra gli acquiferi di maggiore interesse del territorio abruzzese, essendo caratterizzato da un CIP elevato, da una notevole estensione degli affioramenti e da una elevata conducibilità idraulica orizzontale e verticale.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROTEZIONE CIVILE SERVIZIO QUALITA' DELLE ACQUE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

20) COMPLESSO CALCAREO (C): è costituito da calcareniti bioclastiche in banchi massivi con lenti di brecce calcaree, calcareniti torbiditiche con intercalazioni di megabrecce calcari biostromali in alternanza con calcari detritico-organogeni, e con intercalazioni di calcaruditi in tratti sottili, alternanza di calcareniti talora oolitiche ed oncolitiche in grossi banchi e di calcari stromatolitici in strati sottili (Oligocene-Giurassico inf.).

Questo complesso risulta permeabile per fessurazione e carsismo ed è caratterizzato da un grado di "permeabilità relativa" elevato.

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla diffusa fratturazione e dall'esistenza di fenomeni carsici più o meno evoluti. Esso è sede di una importante falda basale e di piccole falde sospese, perenni o temporanee.

Il complesso è da ritenere tra gli acquiferi di maggiore interesse del territorio abruzzese, essendo caratterizzato da un CIP elevato, da una notevole estensione degli affioramenti e da una elevata conducibilità idraulica orizzontale e verticale.

- 21) COMPLESSO CALCAREO-DOLOMITICO (CD): è costituito da calcari e calcari debolmente dolomitici, calcari ricristallizzati in dolomie, dolomie (Giurassico medio-Giurassico inf.).
 - Questo complesso risulta permeabile per fessurazione e subordinatamente per carsismo ed è caratterizzato da un grado di "permeabilità relativa" alto.
 - La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fratturazione della roccia, dalla presenza di numerosi sistemi di faglie e dal carsismo. Esso è sede di una importante falda basale e di piccole falde sospese, perenni o temporanee.
 - Il complesso è da ritenere tra gli acquiferi di rilevante interesse del territorio abruzzese, essendo caratterizzato da un CIP alto, da una grande estensione degli affioramenti e da una alta conducibilità idraulica orizzontale e verticale.
- 22) COMPLESSO DOLOMITICO-CALCAREO DOLOMITICO (D-CD): è costituito da dolomie saccaroidi e calcari dolomitici massivi (Giurassico inf.-Trias sup.).
 - Questo complesso risulta permeabile per fessurazione e subordinatamente per carsismo ed è caratterizzato da un grado di "permeabilità relativa" medio-alto.
 - La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fessurazione della roccia. In esso si sviluppa una falda basale.
 - Il complesso, anche se è tra quelli di maggiore rilevanza del territorio abruzzese, è presente in esso solo con una ridotta estensione.
- 23) COMPLESSO DOLOMITICO (D): è costituito da dolomie a grana fine o grossolana, stratificate o in banchi, talora bituminose alternate a livelli carboniosi (Giurassico inf.-Trias sup.).

Questo complesso risulta permeabile per fessurazione ed è caratterizzato da un grado di "permeabilità relativa" medio.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La circolazione idrica sotterranea è condizionata, sia nell'insaturo sia nel saturo, dalla fessurazione della roccia. Esso è sede di una consistente falda basale.

Il complesso è da ritenere tra gli acquiferi di interesse del territorio abruzzese, essendo caratterizzato da un coefficiente di infiltrazione potenziale medio-alto.

Nella **Tabella 1.7** sono riportati: la denominazione del complesso e la sua sigla, l'età geologica, la descrizione, il grado di permeabilità relativa, il tipo di permeabilità ed il coefficiente di infiltrazione potenziale (C.I.P.), espresso in valori percentuali.

I complessi idrogeologici sono riportati nell'allegato cartografico **"Carta dei complessi idrogeologici"**, realizzato in scala 1:100.000 e restituito in scala 1:250.000, Tavola 1-4.

In conclusione i complessi idrogeologici di maggiore interesse sono risultati, per la loro maggiore permeabilità (e quindi ricettività sia alle acque di infiltrazione diretta sia di quella indiretta) e per la maggiore potenzialità delle falde idriche che si generano al loro interno, quelli carbonatici (calcarei, calcareo-dolomitici, dolomitici, calcareo-selciferi, calcareo-marnosi, calcareo-marnoso-selcifero), quelli fluvio-lacustri e detritici e quelli calcareo-marnoso-argillosi.

La definizione di tali complessi, assieme all'analisi degli elementi stratigrafico-strutturali, dei dati relativi a misure di portata delle sorgenti e dei corsi d'acqua, dei dati relativi a misure piezometriche, ecc., ha permesso la ricostruzione dello schema di circolazione idrica sotterranea dell'intero territorio regionale.

SERVIZIO QUALITA' DELLE ACQUE

Tabella 1.7 – Principali parametri relativi ai complessi idrogeologici individuati nel territorio regionale abruzzese

Complessi idrogeologici	Sigla complesso	Età geologica	Descrizione complesso	Grado di permeabilità relativa	Tipo di permeabilità	C.I. P. %
SABBIOSO	S	Olocene- Pleistocene sup.	Sabbie di duna e di spiagge attuali e antiche.	Alta	Porosità	85
DETRITICO	dt	Olocene- Pleistocene inf.	Detrito di versante e di conoide cementati, detrito di falda sciolto, coperture detritico-colluviali, coni di deizione attivi, depositi morenici, accumuli di frana e paleofrane.	Medio-Alta	Porosità	70- 100
FLUVIO-LACUSTRE	fl	Olocene-Pliocene	Depositi fluviali, anche terrazzati, e fluvio-glaciali prevalentemente ghiaioso-sabbiosi; depositi palustri e lacustri prevalentemente argilloso-limoso-sabbiosi; travertini	Media	Porosità	70 85- 100
SABBIOSO - CONGLOMERATICO	SCg	Pleistocene sup Pleistocene inf.	Sabbie e conglomerati.	Alta	Porosità	85
ARGILLOSO CON INTERCALAZIONI SABBIOSO CONGLOMERATICHE	Ag-SCg	Pleistocene inf Pliocene medio	Argille prevalenti, a luoghi intercalate con sabbie, conglomerati e calcareniti.	Bassa	Porosità	30
CONGLOMERATICO- CALCAREO-SABBIOSO	CgCS	Pliocene inf Miocene sup.?	Conglomerati poligenici a matrice arenacea con elementi Liguridi e cristallini, calciruditi, calcareniti organogene, livelli di sabbie e di peliti siltose.	Medio-Alta	Porosità e fessurazione	75
MARNOSO-ARGILLOSO	MAg	Pliocene inf Miocene sup.?	Marne argillose emipelagiche con sottili e rari livelli siltitici.	Bassa	Porosità e fessurazione	25
ARENACEO	Ar	Pliocene inf Miocene sup.	Arenarie, e subordinatamente sabbie, di natura torbiditica.	Medio-Bassa	Porosità e fessurazione	40
ARGILLOSO- ARENACEO-MARNOSO	AgArM	Pliocene inf Miocene sup Oligocene sup.?	Prevalenti argille marnose con intercalazioni di arenarie torbiditiche e marne argillose.	Molto Bassa	Porosità e fessurazione	20
EVAPORITICO	Ev	Pliocene inf.?- Miocene sup.	Depositi evaporatici: gessi, calcareniti, micriti, calcari evaporitici, marne, marne calcaree, marne e argille bituminose.	Bassa	Porosità e fessurazione	35
SABBIOSO- ARGILLOSO	SAg	Miocene sup.	Alternanza sabbioso-argillosa con livelli arenacei.	Medio-Bassa	Porosità	40
CONGLOMERATICO- ARGILLOSO	CgAg	Miocene sup. – Miocene medio	Brecce calcaree monogeniche in banchi decametrici, a stratificazione indistinta, talora con intercalazioni di argille verdi e grigie.	Medio-Alta	Porosità e subordinatamente fessurazione	75
MARNOSO-CALCAREO	MC	Miocene sup. – Miocene inf.	Marne e marne calcaree, calcari marnosi, con intercalazioni di calcareniti e calciruditi.	Medio-Bassa	Fessurazione	40
CALCAREO-MARNOSO- ARGILLOSO	CMAg	Miocene sup. – Oligocene sup.?	Calcari marnosi alternati a marne argillose e siltiti, con intercalazioni di calcareniti, calciruditi con selce, marne e argille	Media	Fessurazione e carsismo	50

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Complessi idrogeologici	Sigla complesso	Età geologica	Descrizione complesso	Grado di permeabilità relativa	Tipo di permeabilità	C.I. P. %
			marnose.			
CALCAREO-MARNOSO	СМ	Miocene medio- Giurassico medio	Calcari, calcari marnosi, marne calcaree.	Medio-Alta	Fessurazione e carsismo	80- 100
CALCAREO-SILICO- MARNOSO	CSM	Miocene medio- Giurassico inf.	Calcari con liste e noduli di selce con intercalazioni di marne, calcari marnosi.	Medio-Alta	Fessurazione e carsismo	85
CALCAREO-MARNOSO- SELCIFERO	CMS	Miocene inf Giurassico inf.	Calcari marnosi e marne calcaree e argillose, sottilmente stratificate e con livelli di selce; in subordine calcari selciferi.	Media	Fessurazione e carsismo	65
ARGILLE VARICOLORI	Av	Oligocene inf Cretacico sup.	Argille scagliose varicolori con intercalazioni di micriti calcaree, calcari marnosi tipo "pietra paesina" e radiolariti, calcari, gessi e calcari evaporitici.	Molto Bassa	Porosità	20
CALCAREO SELCIFERO	CS	Oligocene- Giurassico sup.	Calcari micritici bianchi con liste e noduli di selce nera, in strati sottili alternati a calcareniti torbiditiche.	Elevata	Fessurazione e carsismo	85- 90
CALCAREO	С	Oligocene- Giurassico inf.	Calcari, calcari torbiditici, biostromali, detritico-organogeni, oolitici, oncolitici e stromatolitici.	Elevata	Fessurazione e carsismo	95
CALCAREO- DOLOMITICO	CD	Giurassico medio-Giurassico inf.	Calcari e calcari debolmente dolomitici, calcari ricristallizzati in dolomie, dolomie.	Alta	Fessurazione e subordinatamente carsismo	90
DOLOMITICO- CALCAREO DOLOMITICO	D-CD	Giurassico inf Trias sup.	Dolomie saccaroidi e calcari dolomitici massivi.	Medio-Alta	Fessurazione e subordinatamente carsismo	85
D OLOMITICO	D	Giurassico inf Trias sup.	Dolomie a grana fine o grossolana, stratificate o in banchi, talora bituminose alternate a livelli carboniosi.	Media	Fessurazione e subordinatamente carsismo	75

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1.2.1.2 Schema di circolazione idrica sotterranea

Dopo la suddivisione del territorio in complessi idrogeologici, è stato possibile ricostruire lo schema della circolazione idrica sotterranea. Ciò è avvenuto sulla base di considerazioni di carattere stratigrafico-strutturali e sulla base dei dati idrologici, idrogeologici, idrochimici, geofisici, piezometrici, stratigrafici, ecc. disponibili. La sostanziale validità dello schema proposto è stata verificata anche attraverso il calcolo del bilancio idrogeologico medio annuo.

Lo studio idrogeologico di dettaglio del territorio abruzzese è riportato nell'Allegato Monografico A1.2 **"Relazione idrogeologica"** in cui sono stati descritti in modo approfondito gli acquiferi che costituiscono i "corpi idrici sotterranei significativi" ricadenti nel territorio regionale abruzzese ed oggetto dei paragrafi successivi, ai quali si rimanda.

La quantificazione delle risorse idriche disponibili è descritta nell'Allegato Monografico A1.3, "Bilancio Idrologico e Idrogeologico".

I risultati ottenuti dalla caratterizzazione idrogeologica del territorio sono stati sintetizzati nell'allegato cartografico **"Carta idrogeologica"**, realizzato in scala 1:100.000 e restituito in scala 1:250.000, Tavola 1-5.

1.2.2 Definizione di corpo idrico sotterraneo

D.Lgs. 152/06 e s.m.i. – Allegato 1 alla PARTE TERZA

A.3 Delimitazione dei corpi idrici

Il Corpo Idrico sotterraneo è per definizione «un volume distinto di acque sotterranee contenuto da uno o più acquiferi». Deve essere individuato come quella massa di acqua caratterizzata da omogeneità nello stato ambientale (qualitativo e/o quantitativo), tale da permettere, attraverso l'interpretazione delle misure effettuate in un numero significativo di stazioni di campionamento, di valutarne lo stato e di individuare il trend. Può essere coincidente con l'acquifero che lo contiene, può esserne una parte, ovvero corrispondere a più acquiferi diversi o loro porzioni.

Le definizioni di acquifero e di corpo idrico sotterraneo permettono di identificare i corpi idrici sotterranei sia separatamente, all'interno di strati diversi che si sovrappongono su un piano verticale, sia come singolo corpo idrico che si estende tra i diversi strati. Un corpo idrico sotterraneo può essere all'interno di uno o più acquiferi, come, ad esempio, nel caso di due acquiferi adiacenti caratterizzati da pressioni simili e contenenti acque con caratteristiche qualitative e quantitative analoghe.

Prima dell'entrata in vigore dei decreti n. 30/2009 e 260/2010, che hanno mdificato gli allegati alla parte terza del D.Lgs. 152/06, quest'ultimo, in merito alla definizione di "corpo idrico sotterraneo", risultava troppo sintetico e non del tutto chiaro. Pertanto, qui di seguito viene fornita la definizione di "corpo idrico sotterraneo" a cui si è fatto riferimento nel corso del presente studio. Si tratta di una definizione che, pur assicurando correttezza scientifica e tecnica, è sufficientemente elastica (da poter essere adattata a tutte le situazioni idrogeologiche) e di facile utilizzazione (perché consente di definire i limiti dei corpi idrici in modo chiaro ed inequivocabile, sempre sulla base di elementi geometrici ben definibili e, nella

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

maggior parte dei casi, riscontrabili in campagna). Essa ha, inoltre, il pregio di lasciare ampia libertà operativa, nella fase di definizione degli stessi limiti e di fornire certezza che essi non abbiano più alcun bisogno di essere modificati nel tempo, per effetto del naturale ed ovvio aggiornamento degli schemi di circolazione idrica sotterranea dovuto al progredire delle conoscenze.

In modo sintetico, per **corpo idrico sotterraneo** è da intendere una *massa d'acqua sotterranea che, indipendentemente dalla sua entità, presenti proprie caratteristiche idrologiche, idrogeologiche, chimico-fisiche e microbiologiche, sia delimitata da elementi geometrici ben definiti e cartografabili e sia o possa essere suscettibile di uno o più impieghi.*

In modo più articolato, per corpo idrico sotterraneo, nel presente studio, si intende una massa d'acqua sotterranea costituita da uno o più accumuli:

- dinamici e/o statici;
- sub-affioranti e/o superficiali e/o profondi (siano essi isolati o tra loro affiancati e/o giustapposti);
- quantitativamente significativi (in relazione alla scala di riferimento ed alla destinazione d'uso);
- costituiti:
 - da falde basali;
 - e/o da falde sospese;
 - e/o da acque di circolazione dell'insaturo che, senza formare vere e proprie falde, diano origine a sorgenti;
 - e/o da acque fossili;
- contenuti in uno o più acquiferi monofalda o multifalda, formati da rocce sciolte e/o litoidi;
- generalmente posti a profondità compatibili con le normali tecniche di captazione;
- posti all'interno di un dominio idrogeologico ben definito (sia esso una "unità idrogeologica³" o un "sistema acquifero⁴"):

QUADRO_CONOSCITIVO 20

_

Unità idrogeologica: dominio dotato di una comprovata unità stratigrafica e/o strutturale e/o morfologica, ai cui limiti possono verificarsi condizioni che annullano od ostacolano le possibilità di interscambi idrici sotterranei ed al cui interno i termini litologici, complessivamente omogenei nel tipo e nel grado di permeabilità, si comportano in modo più o meno uniforme nei riguardi dell'infiltrazione efficace, dell'immagazzinamento e del movimento delle acque sotterranee; si tratta, quindi, di un dominio idrogeologico che viene delimitato sulla base di elementi di carattere essenzialmente statico (stratigrafia, struttura, ecc.), la cui "omogeneità" ed il cui "comportamento" sono frutto di interpretazioni almeno in parte soggettive, in quanto legate, non solo alle caratteristiche idrogeologiche intrinseche del territorio, ma anche alla scala di lavoro ed agli obiettivi che ci si prefigge di conseguire; questo è, in pratica, un modo per delimitare acquiferi che, dal punto di vista idrogeologico, possano essere considerati relativamente omogenei. Quello di "unità idrogeologica" è, dunque, un concetto che consente di suddividere il territorio in termini idrogeologici, operando agevolmente laddove le caratteristiche dello stesso risultano sostanzialmente omogenee per aree relativamente ristrette (ad esempio, in gran parte dell'Italia centro-meridionale).

Sistema acquifero: dominio all'interno del quale le influenze di captazioni possono propagarsi liberamente (più o meno velocemente), ma i cui limiti sono di ostacolo a trasferimenti di influenza; contrariamente al precedente, si tratta, quindi, di un dominio idrogeologico che viene delimitato sulla base di elementi di carattere dinamico (propagazione dell'influenza delle opere di captazione); questo è, in pratica, un modo per delimitare grandi (o piccoli) territori relativamente omogenei, dove non sia agevole o conveniente definire delle "unità idrogeologiche". Quello di

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- generalmente saturo d'acqua (parzialmente o totalmente);
- dotato di unità stratigrafica e/o strutturale e/o morfologica;
- costituito da complessi idrogeologici⁵ che, compatibilmente con le esigenze proprie della scala di riferimento, possano essere considerati complessivamente omogenei nel tipo e nel grado di permeabilità;
- delimitato da elementi geometrici di natura stratigrafica e/o strutturale e/o
 morfologica e/o idrogeologica e/o puramente teorici, ben definibili e cartografabili,
 ma oltre i quali il corpo idrico, senza perdere la propria unità, possa eventualmente
 estendersi al di sotto di impermeabili e/o di altri acquiferi permeabili e/o
 semipermeabili;

caratterizzato:

- da condizionamenti più o meno uniformi dell'idrodinamica sotterranea, all'interno dei singoli complessi idrogeologici (per quanto concerne i fenomeni, sia di infiltrazione efficace, sia di circolazione idrica nell'insaturo e nel saturo);
- e/o dall'eventuale presenza, al suo interno, di elementi stratigrafici e/o strutturali e/o morfologici che esercitino anche importanti azioni di condizionamento sulla circolazione idrica sotterranea;
- e/o dalla possibilità che, al suo interno, l'influenza sull'idrodinamica sotterranea delle opere di captazione si propaghi liberamente;
- e/o da situazioni idrogeologiche periferiche per effetto delle quali possano eventualmente verificarsi condizioni che, in una situazione di equilibrio (naturale o poco disturbata) ritenuta di riferimento, annullino e/o ostacolino gli interscambi idrici sotterranei con acquiferi adiacenti e/o giustapposti;
- e/o da situazioni idrogeologiche periferiche, per effetto delle quali possano crearsi condizioni che ostacolino o non consentano la propagazione delle eventuali modificazioni indotte, sull'idrodinamica sotterranea, dalle opere di captazione;
- e/o dalla possibile presenza di interscambi con corpi idrici superficiali e/o sotterranei.

[&]quot;sistema acquifero" è, dunque, un concetto molto utile per operare, ad esempio, su porzioni sufficientemente contenute delle grandi distese pianeggianti (vedi Pianura Padana o Piana Campana), ovvero su altri tipi di acquiferi caratterizzati da falde drenanti e/o con recapito nei corsi d'acqua, in quanto consente di delimitare il territorio di interesse utilizzando, ad esempio, gli stessi corsi d'acqua (quando questi rappresentano un ostacolo per la propagazione delle perturbazioni indotte in falda dai pozzi in emungimento).

Complesso idrogeologico: uno o più termini litologici generalmente simili, caratterizzati da una soddisfacente similitudine stratigrafico-strutturale, aventi una comprovata unità spaziale e giaciturale, un prevalente tipo di permeabilità generalmente comune ed un grado di permeabilità relativa che si mantiene generalmente in un campo di variazione piuttosto ristretto, oltre che una capacità di infiltrazione e di deflusso sotterraneo sostanzialmente omogenei; la dizione "generalmente", aggiunta alla definizione originaria, sta ad indicare che, anche per quanto concerne i complessi idrogeologici, è necessario far riferimento ad una grande elasticità di interpretazione, in quanto si deve sempre tenere in debito conto la scala di lavoro, oltre che gli obiettivi dello studio (ad esempio, un'alternanza di termini litologici costituito da calcari, calcari con selce e marne può essere considerata come un unico "complesso idrogeologico", se si fa riferimento ad uno studio a carattere regionale, mentre deve essere scissa in almeno tre "complessi", se si fa riferimento ad una scala di dettaglio).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Ovviamente, una definizione apparentemente complessa, come la precedente, ha bisogno di qualche commento.

In essa:

- a) si fa innanzitutto riferimento a domini idrogeologici "generalmente" saturi d'acqua, contenuti in "unità idrogeologiche" o in "sistemi acquiferi" [con riferimento a falde basali o sospese, oltre che (Cfr. in seguito) a circolazioni idriche dell'insaturo che diano origine a sorgenti; la dizione "generalmente" serve proprio ad evidenziare che potrebbero esserci "corpi idrici sotterranei" non necessariamente legati a falde: ad esempio canali carsici, peraltro perfettamente corrispondenti a "corpi idrici superficiali" quali sono i corsi d'acqua];
- b) si fa riferimento a domini idrogeologici dotati di unità stratigrafica "e/o" strutturale "e/o" morfologica" (la dizione "e/o" sta a significare che è sufficiente almeno una delle tre condizioni; ad esempio, nell'area vulcanica dei Campi Flegrei, in Campania, si può obiettivamente considerare l'esistenza di un unico "corpo idrico", anche se non c'è omogeneità morfologica);
- c) si fa riferimento a domini costituiti da "complessi idrogeologici" che "possano" essere considerati "complessivamente" omogenei (le dizioni "possano" e "complessivamente" fanno chiaramente riferimento a quanto esposto in precedenza a proposito della necessità di definire i "complessi idrogeologici" in relazione alla scala di lavoro ed agli obiettivi dello studio);
- d) si fa riferimento a domini idrogeologici delimitati da elementi geometrici di natura stratigrafica e/o strutturale e/o morfologica e/o idrogeologica e/o "puramente teorici" [i primi quattro, per poter essere evidenti, devono essere individuabili in superficie; in quanto agli elementi "puramente teorici", ci si riferisce a limiti convenzionali, tra i quali, ad esempio, si possono annoverare i confini amministrativi degli enti di gestione delle acque o quello puramente geometrico (una circonferenza di raggio definito) utilizzato, in Campania, per il "corpo idrico" del Somma-Vesuvio (ciò nei casi in cui sia impossibile far riferimento a limiti stratigrafici, strutturali, morfologici o idrogeologici, ovvero nei casi in cui si trovi conveniente far riferimento a semplici limiti amministrativi, purché siano chiari gli eventuali rapporti di interscambio esistenti tra una parte e l'altra degli stessi];
- e) si fa riferimento a "corpi idrici" che, senza perdere la propria unità, possano eventualmente estendersi oltre i limiti di cui al punto precedente, al di sotto di impermeabili e/o di acquiferi permeabili e/o semipermeabili (è, ad esempio, il caso di molti acquiferi carbonatici che, ribassati da faglie dirette, si rinvengono anche al di sotto di altri "corpi idrici" e/o di impermeabili);
- f) si fa riferimento a "corpi idrici" caratterizzati:
 - da condizionamenti "più o meno" uniformi dell'idrodinamica sotterranea (la dizione "più o meno" si riferisce alla necessaria elasticità di interpretazione legata, come già osservato, alla scala di lavoro ed agli obiettivi dello studio);

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- dalla possibile presenza, al loro interno, di elementi geometrici che condizionano la circolazione idrica sotterranea; possono quindi essere presenti semplici fattori di condizionamento (ad esempio, dei semipermeabili), ovvero dei veri e propri spartiacque sotterranei (dal che si deduce, tra l'altro, che un "corpo idrico" non deve essere necessariamente tributario di una sola sorgente);
- dalla possibilità che, al loro interno, l'influenza sull'idrodinamica sotterranea delle opere di captazione possa propagarsi liberamente (quindi, è anche prevista una situazione diametralmente opposta a quanto indicato al punto precedente);
- dal fatto che ai loro margini possano verificarsi condizioni che ostacolano in modo
 più o meno marcato gli interscambi idrici sotterranei con gli acquiferi limitrofi (in
 questo caso si fa riferimento ad una situazione di equilibrio naturale, perché
 spesso i travasi da un acquifero all'altro possono essere innescati o accentuati
 dagli emungimenti; e non è possibile condizionare i limiti dei "corpi idrici
 sotterranei" a fattori antropici che potrebbero variare, anche sostanzialmente, nel
 tempo);
- dal fatto che ai loro margini possano verificarsi condizioni che ostacolino o non consentano, anche in presenza di emungimenti, gli interscambi idrici sotterranei con gli acquiferi limitrofi (in tal caso si tratta di acquiferi idrogeologicamente isolati);
- dal fatto che ai loro margini possano verificarsi interscambi con corpi idrici superficiali e/o sotterranei (non è quindi necessario che gli acquiferi siano idrogeologicamente isolati: in questi casi è sufficiente calcolare i possibili travasi tra "corpi idrici" adiacenti);
- g) si fa riferimento a domini idrogeologici contenenti uno o più accumuli idrici che siano quantitativamente "significativi" (la significatività delle singole risorse è chiaramente legata alla scala di riferimento ed alla destinazione d'uso: ad esempio, una modestissima aliquota d'acqua può essere "significativa" se è indispensabile all'economia pastorale di una determinata zona, ma può essere "non significativa" per l'approvvigionamento idrico di un centro abitato);
- h) si fa riferimento a "corpi idrici", sia dinamici (contenenti falde basali e/o sospese e/o giustapposte, oltre che, eventualmente, acque di circolazione dell'insaturo che diano origine a sorgenti (ad esempio, quelle circolanti nei canali carsici), sia statici (se contenenti acque fossili, anch'esse utilizzabili a condizione che ci sia la consapevolezza che si tratta di veri e propri giacimenti destinati ad esaurirsi);
- i) si fa riferimento a "corpi idrici" posti "generalmente" a profondità compatibili con le normali tecniche di captazione (la dizione "generalmente" è legata al fatto che, se necessario, si possono raggiungere profondità di prelievo elevate: ad esempio, nel caso delle acque fossili).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Inoltre, i corpi idrici sotterranei possono essere suddivisi in "principali" e "secondari":

- per corpo idrico sotterraneo principale si intende un dominio idrogeologico caratterizzato secondo la precedente definizione (ad esempio: un dominio in cui siano presenti una o più sorgenti con relativi bacini sotterranei);
- per corpo idrico sotterraneo secondario si intende una porzione del "corpo idrico" principale (ad esempio: il bacino di alimentazione di una delle sorgenti del corpo idrico principale).

I motivi di questa ulteriore suddivisione sono da ricercare nel fatto che gli spartiacque sotterranei interni ai corpi idrici principali non sono mai certi, o perché mobili (ad esempio: negli acquiferi di pianura, per motivi stagionali e/o di emungimento) o perché ricostruiti per via indiretta (ad esempio: nei massicci carbonatici) o per mancanza di dati (tale carenza è molto accentuata, ad esempio, negli acquiferi cristallini italiani).

Risultano certi, invece, i limiti esterni dei corpi idrici principali; infatti, come si evince dalla definizione, essi vanno individuati in base ad elementi geometrici concreti, indipendentemente dal fatto che si lascino o meno attraversare dall'acqua.

Le incertezze vengono in tal modo limitate ai soli corpi idrici secondari i quali, non essendo fondamentali, potrebbero essere presi in considerazione qualora li si ritenga necessari, ad esempio, per motivi gestionali della risorsa.

In relazione a quanto anzi discusso, nel presente studio si intende fare riferimento alla seguente definizione.

Per corpi idrici sotterranei significativi si intendono accumuli d'acqua (falde idriche o acque intrappolate da litotipi impermeabili) non trascurabili ai fini del loro utilizzo, contenuti nelle rocce permeabili della zona di saturazione del sottosuolo (con esclusione, quindi, dei corpi idrici discontinui e/o di modesta estensione e/o contenuti in rocce poco permeabili e/o di scarsa importanza idrogeologica e/o di irrilevante significato ecologico).

Con riferimento alla definizione contenuta nel D.Lgs. 152/06, riportata in evidenza all'inizio del presente capitolo, i **corpi idrici sotterranei significativi** rappresentano la parte o le parti sature principali dei generici "corpi idrici sotterranei", con esclusione delle falde di scarso interesse e delle acque di circolazione dell'insaturo che, senza formare vere e proprie falde, danno origine a sorgenti; anche essi possono essere ovviamente suddivisi in **principali** e **secondari**.

Contrariamente a quanto si legge nel citato punto 1.2.1 del D.Lgs. 152/06, nella definizione di corpo idrico cui si fa riferimento nel presente studio ed anzi riportata, non si parla di accumuli d'acqua "posti al di sotto del livello di saturazione permanente", in quanto l'introduzione della dizione "permanente" significherebbe, ad esempio, che lo spessore di acquifero interessato dalle escursioni piezometriche stagionali non sia parte del "corpo idrico".

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Con riferimento alla stessa definizione riportata nel paragrafo 1.2.1, c'è ancora da osservare che essa non è assolutamente estendibile a tutti i "corpi idrici sotterranei". Infatti, se questi dovessero essere definiti esclusivamente come semplici accumuli idrici in zona satura, non si capirebbe come delimitarli ed, inoltre, si creerebbe gran confusione laddove si rinvengano più falde sovrapposte (perché ognuna di esse rappresenterebbe un "corpo idrico", pur trovandosi tutte nella stessa zona satura), laddove sono presenti falde sospese (perché queste si trovano a quota più alta della falda basale, dove viene normalmente collocata la zona satura) e laddove è poco conosciuto l'assetto idrostratigrafico del territorio.

In conclusione, sulla base di quanto esposto in precedenza, si può affermare che la definizione utilizzata per i "corpi idrici sotterranei", nonostante l'apparente articolazione, si è rivelata estremamente operativa. Si può infatti osservare che pone solo pochi vincoli concettuali (peraltro non molto rigidi) e, per quanto concerne i limiti territoriali, lascia ampia libertà di adattamento alle situazioni locali; ciò perché le condizioni idrogeologiche sono dinamiche e diverse da zona a zona e difficilmente riconducibili a schemi troppo rigidi.

Prima di concludere è bene evidenziare che risulta possibile definire anche i **corpi idrici sotterranei di interesse**.

Per corpo idrico sotterraneo di interesse si intende un corpo idrico sotterraneo che, pur non essendo significativo, si ritiene di dovere in ogni caso monitorare e classificare per l'elevato interesse naturalistico e/o paesaggistico e/o ambientale delle emergenze sorgive, per le particolari utilizzazioni in atto e/o previste delle sue acque o per la possibilità, reale o potenziale, di trasmettere inquinamento ad altri corpi idrici (significativi o di interesse).

1.2.3 Identificazione dei corpi idrici sotterranei significativi

Nelle **Tabelle 1.8** e **1.9** sono riportati i "corpi idrici sotterranei significativi", con l'indicazione dei corpi idrici principali e secondari, riconosciuti nell'ambito del territorio di competenza della Regione Abruzzo.

A ciascun corpo sono attibuite una denominazione ed una sigla di riferimento. Quest'ultima è stata utilizzata ogni qualvolta sono presenti informazioni legate al corpo idrico stesso (ad esempio: i principali punti d'acqua da monitorare).

Tabella 1.8 - Corpi idrici sotterranei significativi in successioni carbonatiche

Corpi idrici sotterranei principali			Corpi idrici sotterranei secondari		
Denominazione	Sigla	Litologia prevalente	Denominazione	Sigla	Litologia prevalente
Montagna dei Fiori ¹	MF	cms	-	-	-
Monti del Gran Sasso – Monte	00.0		Monti del Gran Sasso	GS-S(a)	csm
Sirente	GS-S	csm	Monte Sirente s.l.	GS-S(b)	csm
Monte della Maiella	ML	cs	Colle della Civita	ML(a)	CS
Monte della Malella			Monte Acquaviva	ML(b)	CS
Monte Morrone	MR	csm	Monte Rotondo	MR(a)1	csm
Monte Morrone			Monte Morrone s.s.	MR(a)2	csm
Monte Porrara	PR	cm	Settore settentrionale	PR(a)1	cm
Monte Portara			Monte Porrara s.s.	PR(a)2	cm

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpi idrici sotterrar	nei princi	ipali	Corpi idrici sotterranei secondari			
Denominazione	Sigla	Litologia prevalente	Denominazione	Sigla	Litologia prevalente	
	RT	cm	Cresta di Pietra Maggiore	RT(a)	cm	
Monte Rotella			Monte Rotella s.s. – Monte Arazzecca	RT(b)	cm	
Monte Genzana – Monte Greco ²	G-G	csm	Monte Genzana s.l.	G-G(a)	csm	
Monte Genzana – Monte Greco	G-G		Monte Greco s.l. ²	G-G(b)	csm	
Monte Marsicano	MS	С	Monte Marsicano s.l.	MS(a)	С	
Monte Marsicano	IMS		Monte Godi s.l.	MS(b)	С	
Monte Velino – Monte Giano –		csm	Monte Giano ³	V-G-N(a)	csm	
Monte Veillo – Monte Giano – Monte Nuria ³	V-G-N		Monte Velino – Monte Nuria ³	V-G-N(b)	csm	
Monte Nulla			Tre Monti	V-G-N(c)	cm	
Manta Camarahia Manti dalla		cd	Monte Pianeccia - Monte Fontecchia	C-M(a)	cd	
Monte Cornacchia – Monti della Meta ^{2,3}	C-M		Monti Carseolani - Monte Cornacchia - Monti della Meta ^{2,3}	C-M(b)	cd	
			Monte La Meta ^{2,3}	C-M(c)	С	
		С	Monti Simbruini (Alta Valle Roveto) ³	S-E-C(a)	С	
Monti Simbruini – Monti Ernici –	S-E-C		Monti Ernici (Pizzo Deta)	S-E-C(b)	С	
Monte Cairo ²			Monti Simbruini - Monti Ernici – Monte Cairo (recapiti esterni alla Regione) ⁴	S-E-C(c)	С	

¹ Interessa anche la Regione Marche;

Legenda:

Litologia prevalente affiorante:

calcari;

cd: calcari, calcari dolomitici e dolomie;

cs: calcari e calcari selciferi; cm: calcari e calcari marnosi;

calcari, calcari con selce e calcari marnosi; csm: cms: calcari marnosi, marne e calcari con selce.

Tabella 1.9 – Corpi idrici sotterranei significativi in successioni fluvio-lacustri

Denominazione	Sigla	Litologia prevalente
Piana del Tronto ¹	TR	gla
Piana del Vibrata	VI	gla
Piana del Salinello	SN	gla
Piana del Tordino	TO	gla
Piana del Vomano	VO	gla
Piana del Saline	SL	gla
Piana del Pescara	PE	gla
Piana del Foro	FO	gla
Piana del Sangro	SA	gla
Piana del Sinello	SI	gla
Piana del Trigno ²	TG	gla
Piana dell'Alta Valle dell'Aterno	AVA	gla
Piana di Sulmona	SU	gla
Piana del Fucino e dell'Imele	FU	gla
Piana di Castel di Sangro	CSA	gla
Piana del Tirino	TIR	gla
Piana di Oricola ³	OR	gla

Interessa anche la Regione Marche;
 Interessa anche la Regione Molise;
 Interessa anche la Regione Lazio.

Legenda:

<u>Litologia prevalente affiorante</u>: gla: ghiaie, limi e argille

² Interessa anche la Regione Molise; ³ Interessa anche la Regione Lazio;

⁴ Interessa quasi esclusivamente la Regione Lazio.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

I corpi idrici sotterranei significativi sono riportati nell'allegato cartografico **"Carta dei Corpi Idrici Sotterranei Significativi e di Interesse"**, in scala 1:250.000, Tavola 1-3.

I limiti degli stessi corpi idrici sono i seguenti:

<u>Il corpo idrico della Montagna dei Fiori</u> si estende da Ascoli Piceno fino a Nord di Teramo ed è delimitato, da tutti i lati, dai depositi poco permeabili del "Flysch della Laga".

Il corpo idrico dei Monti del Gran Sasso - Monte Sirente è delimitato, a meridione, dalla faglia di Valle Grande, dalla Valle del Carrito e dall'accavallamento tra Pescina e Cesoli, lungo la Valle del Sangro. A Nord e ad Est, il limite coincide con la sovrapposizione della serie carbonatica sulle molasse del "Flysch della Laga", la quale sembra peraltro proseguire sotto i depositi recenti della Piana di Sulmona. Il limite occidentale coincide con un'importante discontinuità strutturale che si sviluppa lungo l'allineamento dell'alta Valle del Fiume Aterno con gli abitati di Rocca di Cambio e Ovindoli.

<u>Il corpo idrico dei Monti della Maiella</u> è delimitato, a Sud, dall'accavallamento tettonico esistente lungo la direttrice Palena - Campo di Giove; ad Ovest, dalla Depressione di Caramanico s. l., e, lungo gli altri bordi, dai sedimenti plio-pleistocenici della fascia costiera adriatica.

<u>Il corpo idrico del Monte Morrone</u> è delimitato, a Nord-Ovest, da depositi terrigeni poco permeabili; a Nord-Est, dall'accavallamento tettonico sui sedimenti miocenici della depressione di Caramanico; a Sud-Ovest, dai sedimenti fluvio-lacustri della Piana di Sulmona e, a Sud-Est, dalla linea tettonica di Pacentro.

<u>Il corpo idrico del Monte Porrara</u> è idrogeologicamente separato, dai Monti della Maiella, dall'accavallamento tettonico Palena - Campo di Giove e, dalla struttura del Morrone, per mezzo della Faglia di Pacentro. Gli altri limiti sono marcati da depositi terrigeni praticamente impermeabili e dall'accavallamento tettonico esistente lungo la prosecuzione, verso Nord-Ovest, dell'alta Valle del Fosso la Vera; a Nord-Ovest dai depositi fluvio-lacustri della Piana di Sulmona.

<u>Il corpo idrico di Monte Rotella</u> è delimitato dalla struttura di Monte Porrara a Nord-Est e dall'accavallamento tettonico Pettorano – Villa Scontrone a Sud-Ovest; a Nord-Ovest dai depositi fluvio-lacustri della Piana di Sulmona.

<u>Il corpo idrico di Monte Genzana - Monte Greco</u> è delimitato, a Nord-Est, dall'anzidetta direttrice Pettorano-Villa Scontrone; a Sud-Est dal complesso argilloso-arenaceo-marnoso della media Valle del Sangro; a Sud-Ovest dall'importante linea tettonica "Profluo-Sagittario" e a Nord-Ovest dalla Faglia di Bugnara che lo separa dal Monte Sirente *s. l.*.

<u>Il corpo idrico di Monte Marsicano</u> è delimitato a Sud-Ovest dalla direttrice tettonica Sangro-Giovenco e la Valle del Carrito, a Nord-Est dalla Faglia "Profluo-Sagittario", lungo la quale la struttura si trova tettonicamente accavallata al massiccio di Monte Genzana-Monte Greco, ed a Sud-Est dai depositi argilloso-arenaceo-marnosi poco permeabili e dalla direttrice tettonica lungo la Valle del Sangro.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Il corpo idrico di Monte Velino - Monte Giano - Monte Nuria è delimitato a Nord-Ovest dalla direttrice tettonica "Antrodoco-Olevano"; a Nord-Est dalla direttrice "alta Valle dell'Aterno - Rocca di Cambio – Ovindoli"; a Sud-Ovest dall'alta Valle dell'Imele, dove i Monti Carseolani risultano tettonicamente sovrapposti al Monte Velino con l'interposizione del complesso arenaceo-marnoso pressoché impermeabile; a Sud-Est dalla Piana del Fucino, la quale è impostata all'intersezione di direttrici tettoniche di importanza regionale, alcune con caratteri di compressione (Rocca di Cambio – Ovindoli, alta Valle dell'Imele, Fossato di Rosa).

<u>Il corpo idrico di Monte Cornacchia - Monti della Meta</u> è delimitato a Nord-Est dalla direttrice tettonica Sangro-Giovenco; ad Est dall'accavallamento tettonico dei Monti della Meta sul complesso arenaceo-marnoso; a Sud dal sovrascorrimento dei Monti di Venafro sui Monti della Meta; a Sud-Ovest dai depositi flyschoidi della Valle Roveto.

<u>Il corpo idrico dei Monti Simbruini - Monti Ernici - Monte Cairo</u> è delimitato ad Ovest dalla Faglia regionale "Antrodoco-Olevano"; a Nord-Est dal fronte di sovrascorrimento del massiccio sul flysch della Valle Roveto; a Sud-Ovest dal margine orientale della Valle Latina e, nell'area meridionale, dall'importante direttrice tettonica del Rio Secco e del basso corso del Rapido.

<u>I corpi idrici dell'Alta Valle dell'Aterno, della Piana di Sulmona, della Piana del Fucino e dell'Imele, della Piana di Castel di Sangro, del Tirino e di Oricola</u> sono delimitati dai massicci carbonatici adiacenti da cui, peraltro, traggono in parte alimentazione.

<u>I corpi idrici delle piane del Tronto, del Vibrata, del Salinello del Tordino, del Vomano, del Saline, del Pescara, del Foro, del Sangro, del Sinello e del Trigno</u> sono tutti ben delimitati dalla presenza, ai loro margini, di depositi prevalentemente argilloso-limoso-sabbiosi poco permeabili.

Le descrizioni dei corpi idrici sotterranei significativi sono riportate nell'Allegato Monografico A1.2 "Relazione idrogeologica".

Si sottolinea che, dal punto di vista idrogeologico, i "corpi idrici sotterranei significativi" di maggiore interesse per la loro potenzialità idrica sotterranea sono quelli carbonatici, dove, a seconda dei casi, si può avere una prevalenza di litotipi più francamente calcarei, calcareo-dolomitici, calcareo-marnosi, calcareo-silico-marnosi, calcareo-marnosi-selciferi.

Un importante ruolo idrogeologico è svolto anche dai corpi idrici sotterranei ghiaioso-limosoargillosi posti ai margini dei massicci carbonatici, che, in parte, traggono alimentazione proprio da essi e da quei corpi relativamente superficiali, contenuti nei depositi alluvionali (terrazzati e non) dei fondovalle.

1.2.4 Identificazione dei corpi idrici sotterranei di interesse

Come già evidenziato nel paragrafo 1.2.2, per "corpo idrico sotterraneo di interesse" si intende un corpo idrico sotterraneo che, pur non essendo significativo, si ritiene di dovere in ogni caso monitorare per l'elevato interesse naturalistico e/o paesaggistico e/o ambientale delle

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

emergenze sorgive, per le particolari utilizzazioni in atto e/o previste delle sue acque o per la possibilità, reale o potenziale, di trasmettere inquinamento ad altri corpi idrici (significativi o di interesse).

Sono stati considerati tali le piane fluvio-lacustri e alluvionali riportate nella **Tabella 1.10**.

Tabella 1.10 - Corpi idrici sotterranei di interesse in successioni fluvio-lacustri

Denominazione	Sigla	Litologia prevalente
Piana di Navelli	NAV	gla
Piana di Gagliano Aterno	GA	gla
Piana dell'Alento	PE-FO	gla
Piana dell'Osento	SA-SI	gla

Legenda:

<u>Litologia prevalente affiorante</u>: gla: ghiaie, limi e argille.

Inoltre, sono stati considerati di interesse anche i corpi idrici sotterranei che si originano in successioni calcareo-marnoso-argillose, come riportato in **Tabella 1.11**.

Questi tipi di acquiferi sono caratterizzati dalla presenza di discontinui livelli poco permeabili, dal locale riempimento delle fratture con depositi marnoso-argillosi e/o con cataclasite a grana fine. Ciò nonostante, la presenza di una maglia relativamente rada di fessure beanti e carsificate, spesso coincidenti con discontinuità tettoniche, rende tali acquiferi localmente abbastanza permeabili. Essi danno origine ad una moltitudine di piccole sorgenti, essendo la circolazione idrica sotterranea molto frazionata, ed hanno, comunque, una importanza locale non trascurabile, in quanto si trovano in aree caratterizzate dalla presenza di prevalenti formazioni argilloso-arenaceo-marnose poco permeabili.

Tabella 1.11 - Corpi idrici sotterranei di interesse in successioni calcareo-marnoso-argillose

Denominazione	Sigla	Litologia prevalente
Colli Campanari	CC	cmag
Monte Pagano	PG	cmag
Monte Secine – Monti Pizzi – Monte Vecchio - Monte Castellano ¹	S-P-V-C	cmag
Castel Fraiano – Colle dell'Albero	CF-CA	cmag

¹ Interessa anche la Regione Molise

Legenda:

<u>Litologia prevalente affiorante</u>: cmag: calcari marnosi con argille

I corpi idrici di *Monte Pagano, Colli Campanari, Monte Secine, Monti Pizzi, Monte Vecchio, Monte Castellano, Castel Fraiano, Colle dell'Albero* sono tutti ben delimitati dalla presenza, ai loro margini, di depositi argilloso-arenaceo-marnosi poco o punto permeabili.

I corpi idrici sotterranei di interesse sono riportati nell'allegato cartografico **"Carta dei Corpi Idrici Sotterranei Significativi e di Interesse"**, in scala 1:250.000, Tavola 1-3.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

2. INDIVIDUAZIONE PRELIMINARE DEL CORPO IDRICO SUPERFICIALE DI **RIFERIMENTO**

PROGER S.P.A.

ENEL.HYDRO

D'APPOLONIA

D.Lgs. 152/06 - punto 1.1.1 dell'allegato 3 come modificato dal D.M 56/2009

Per ciascun tipo di corpo idrico superficiale, individuato in base a quanto riportato nella precedente sezione A al presente punto, sono definite:

- a) le condizioni idromorfologiche e fisico-chimiche tipo-specifiche che rappresentano i valori degli elementi di qualità idromorfologica e fisico-chimica che l'Allegato 1, punto A.1 alla parte terza del presente decreto legislativo, stabilisce per tale tipo di corpo idrico superficiale in stato ecologico elevato, quale definito nella pertinente tabella dell'Allegato 1, punto
- b) le condizioni biologiche di riferimento tipo-specifiche che rappresentano i valori degli elementi di qualità biologica che l'Allegato 1, punto A.1 specifica per tale tipo di corpo idrico superficiale in stato ecologico elevato, quale definito nella pertinente tabella dell'Allegato 1, punto A.2.

Nell'applicare le procedure previste nella presente sezione ai corpi idrici superficiali fortemente modificati o corpi idrici artificiali, i riferimenti allo stato ecologico elevato sono considerati riferimenti al potenziale ecologico massimo definito nell'Allegato 1, tabella A.2.5. I valori relativi al potenziale ecologico massimo per un corpo idrico sono riveduti ogni sei anni.

Il D.Lgs. 152/06, d'altra parte, recepisce integralmente la Direttiva 2000/60/CE, Water **Framework Directive** (di seguito abbreviata WFD).

Direttiva 2000/60/CE - Water Framework Directive

Articolo 2 - Definizioni

Ai fini della presente direttiva si applicano le seguenti definizioni:

17. ... "stato delle acque superficiali: espressione complessiva dello stato di un corpo idrico superficiale, determinato dal valore più basso del suo stato ecologico e chimico".

Con specifico riferimento ai corsi idrici superficiali, la stessa direttiva, all'Allegato V ne specifica le definizioni normative per la classificazione dello stato ecologico e chimico.

Più specificamente nella stessa (all. V, paragrafo 1.4.2, punto i) si individua una classificazione dello stato ecologico nelle seguenti 5 classi:

- ELEVATO:
- BUONO:
- MODERATO;
- MEDIOCRE;
- PESSIMO.

in base al più basso dei valori riscontrati durante il monitoraggio biologico e fisico-chimico.

Ogni classe rappresenta un differente grado di disturbo antropico sulle condizioni di un particolare sottoinsieme di elementi biologici, idromorfologici e fisico-chimici che caratterizzano l'ecosistema acquatico.

Lo stato di qualità dei corpi idrici, per quanto attiene ai parametri microbiologici, viene definito mediante un rapporto di qualità ecologica (Ecological Qualità Ratio, EQR), calcolato rapportando "i valori dei parametri biologici riscontrati in un dato corpo superficiale a quelli constatabili nelle condizioni di riferimento applicabili al medesimo corpo. Il rapporto è espresso come valore numerico compreso tra 0 e 1: i valori prossimi a 1 tendono allo stato ecologico elevato, quelli prossimi allo 0 allo stato ecologico pessimo". L'identificazione delle condizioni di riferimento viene pertanto richiesta per fornire una base rispetto alla quale misurare gli effetti delle attività umane passate e presenti su ogni corso d'acqua.

La WFD richiede che il livello di impatto umano sulla struttura e sul funzionamento degli ecosistemi acquatici sia definito in termini di condizioni di un gruppo di elementi di qualità (All. V, paragrafo 1.1). Le condizioni di riferimento sono quindi quelle in cui il disturbo antropico sugli elementi di qualità biologica, idromorfologica e fisico-chimica di un corpo d'acqua risulta essere assente o presente in maniera molto ridotta (**Tabella 2.1**).

Il primo passo è pertanto l'individuazione di un corso d'acqua o di una parte di esso nel guale l'impatto antropico sui suddetti elementi di qualità sia assente o molto lieve: queste condizioni

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

indisturbate saranno le condizioni di riferimento della classificazione dello stato di qualità dei corsi idrici utilizzando i sistemi di monitoraggio per misurare di quanto un corpo d'acqua si discosta dalle condizioni di riferimento.

Tabella 2.1 – Esempio di elementi qualitativi per la classificazione dello stato ecologico dei corsi d'acqua WFD-All.V paragrafo 1.1.1

Elementi biologici

- Composizione e abbondanza della flora acquatica
- Composizione e abbondanza dei macroinvertebrati bentonici
- Composizione, abbondanza e struttura di età della fauna ittica

Elementi idromorfoglogici a sostegno degli elementi biologici

Regime idrologico

- Massa e dinamica del flusso idrico
- Connessione con il corpo idrico sotterraneo

Continuità fluviale

Condizioni morfologiche

- Variazione della profondità e della lunghezza del fiume
- Struttura e substrato dell'alveo
- Struttura della zona ripariale

Elementi chimici e fisico-chimici a sostegno degli elementi biologici

Elementi generali

- Condizioni termiche
- Condizioni di ossigenazione
- Salinità
- Stato di acidificazione
- Condizione dei nutrienti

Inquinanti specifici

- Inquinamento da tutte le sostanze prioritarie di cui è stato accertato lo scarico nel corpo idrico
- Inquinamento da altre sostanze di cui è stato accertato lo scarico nel corpo idrico in quantità significative

La principale difficoltà, associata alla definizione delle condizioni di riferimento specifiche per i diversi ecotipi, consiste nella scarsa disponibilità di corpi idrici non perturbati rispetto ai quali valutare il grado di scostamento.

Nell'ambito della Strategia Comune per l'Implementazione della Direttiva Quadro, gli aspetti legati alla definizione delle condizioni di riferimento sono stati sviluppati nelle **Linee Guida REFCOND, ver. '03**. Le principali opzioni metodologiche descritte sono le seguenti:

- 1. condizioni di riferimento basate su criteri spaziali, utilizzando i dati della rete di monitoraggio;
- 2. condizioni di riferimento basate sull'utilizzo di modelli predittivi;
- condizioni di riferimento basate su criteri temporali, utilizzando dati storici o paleoricostruzioni o una combinazione di entrambi;
- 4. una combinazione delle opzioni sopra elencate.

Ove non sia possibile applicare alcuno dei metodi summenzionati, le condizioni di riferimento potranno essere determinate in base al giudizio di esperti.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Se vi è un considerevole numero di siti non perturbati o minimamente perturbati, con un numero adeguato di misure, su cui poter calcolare una tendenza centrale (media, mediana o moda) e una distribuzione di valori (percentili, intervalli di confidenza), allora i dati del monitoraggio sono un metodo diretto per la determinazione delle condizioni di riferimento.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

2.1 Individuazione dei Corpi Idrici di Riferimento nel territorio regionale

Considerato che, al momento della redazione del presente piano, non risultano ancora disponibili sufficienti dati esplicitamente raccolti per l'implementazione della Direttiva 2000/60/CE e che a livello nazionale è ancora in corso un ampio dibattito finalizzato a definire criteri univoci e validati per l'individuazione delle condizioni di riferimento, si ritiene di rimandare tale attività a seguito della disponibilità di dati di monitoraggio completi ai sensi della Direttiva citata e della definizione di criteri validati a scala nazionale e comunitaria.

Al momento si ritiene utile riportare di seguito un analisi sul *tratto montano del Fiume Tordino*, a monte della stazione di monitoraggio R1303TD1, ipotetico sito di riferimento per il tipo "13SR3T".

Tale individuazione è da considerarsi preliminare, in quanto è avvenuta mediante l'utilizzo dei dati ottenuti applicando ii criteri di monitoraggio e di classificazione dello stato qualitativo dei tratti fluviali previsti nell'Allegato 1 del D.Lgs. 152/99 ed ad una preliminare e sommaria analisi degli elementi idromorfologici e del grado di antropizzazione previsti nell'Allegato 3 alla parte terza del D.Lgs. 152/06.

Tabella 2.2 – Valutazione Stato di Qualità del Fiume Tordino – stazione di monitoraggio R1303TD1 (dati 2009)

Bacino	Corso d'acqua	Codice stazione	Località	PR	Punteggio macrodescrittori	LIM	IBE	C.Q.B.	SECA	Stato chimico	SACA
Tordino	Tordino	R1303TD1	P.te Macchiatornella	TE	560	1	10	1	Classe	< valore soglia	Elevato

Legenda:

PR: Provincia

LIM: Livello di Inquinamento dai Macrodescrittori

IBE: Indice Biologico Esteso C.Q.B.: Classe di Qualità Biologica SECA: Stato Ecologico dei Corsi d'Acqua

 $< valore \ soglia: \ Concentrazione \ di \ inquinanti \ chimici \ (Tabella \ 1 \ dell' \ Allegato \ 1 \ al \ D.Lgs \ 152/99 \ e \ s.m.i.) \ inferiore \ ai \ al \ D.Lgs \ 152/99 \ e \ s.m.i.)$

valori soglia riportati nelle Direttive Comunitarie.

SACA: Stato Ambientale dei Corsi d'Acqua

Come si evince dagli indici di qualità riportati nella **Tabella 2.2**, le caratteristiche del tratto in studio del Fiume Tordino sono riconducibili a quelle di un *ambiente non alterato con caratteristiche biologiche, idromorfologiche e fisico-chimiche tipiche di un corpo idrico relativamente immune da impatti antropici* (D.Lgs. 152/99).

Aspetti biologici

In **Tabella 2.3** sono riportati i risultati del monitoraggio dei parametri biologici effettuato, dal 2004 al 2009, ai fini della classificazione dei corsi d'acqua ai sensi dell'Allegato 1 al D.Lgs. 152/99.

In tabella si evidenzia un valore medio di IBE pari a 10 - 11 e, corrispondente ad un "ambiente non alterato".

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 2.3 - Valori IBE nella stazione R1303TDI, tratto montano del Fiume Tordino (periodo 2004-2009)

anno	I.B.E.	C.Q.	Giudizio sintetico
2004-2005	11	1	Ambiente non inquinato
2005	11	1	Ambiente non inquinato
2006	10	1	Ambiente non inquinato
2007	10	1	Ambiente non inquinato
2008	11	1	Ambiente non inquinato
2009	10	1	Ambiente non inquinato

Aspetti chimico-fisici e microbiologici

Nella **Tabella 2.4** sono riportati i valori del 75° percentile dei parametri macrodescrittori (D.Lgs. 152/99, Allegato 1, Tabella 4) ed il conseguente indice LIM (Livello di Inquinamento dai Macrodescrittori – D.Lgs. 152/99, All. 1, Tabella 7) risultanti dal monitoraggio effettuato nel 2009 in corrispondenza della stazione R1303TD1.

Tabella 2.4 - Valori LIM nella stazione R1303TDI, tratto montano del Fiume Tordino (2009)

Parametri	Unità di misura	75° percentile	Livello di inquinamento del parametro	Punteggio
100-O ₂ (% sat)	%	3.3	1	80
B.O.D.	mg/l O₂	1.0	1	80
C.O.D.	mg/l O₂	2.5	1	80
Azoto ammoniacale	mg/l	0.01	1	80
Azoto nitrico	mg/l	0.15	1	80
Fosforo totale	mg/l	0-005	1	80
Escherichia coli	UFC/100ml	5	1	80
Somma				560
Livello di inquinamento LIM				1

Come si può osservare in tabella, il LIM risulta pari a 1 e, associato al valore medio di IBE riportato nel paragrafo precedente, determina uno Stato Ecologico (SECA) di classe 1.

Aspetti idromorfologici

Nel tratto montano del Fiume Tordino, a monte della stazione di monitoraggio R1303TD1, località Macchiatornella, non risultano significative alterazioni della morfologia fluviale (strutture spondali, briglie o traverse fluviali, ecc.) e/o del flusso idrico.

Va inoltre segnalato, che, il tratto montano del Fiume Tordino presenta una certa uniformità dal punto di vista geologico: l'alveo fluviale lungo il tratto a monte della stazione di monitoraggio R1303TD1 ha composizione uniforme a prevalenza di argille marnose con intercalazioni di arenarie torbiditiche e marne argillose.

Aspetti antropici

Il tratto montano del Fiume Tordino attraversa il Parco Nazionale del Gran Sasso e Monti della Laga e due Siti di Importanza Comunitaria (S.I.C.), il Bosco della Martese e l'Area sommitale della Laga.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

A monte della stazione di monitoraggio R1303TD1, non insistono centri abitati o infrastrutture significative; si tratta pertanto di un ambiente caratterizzato da un alto grado di naturalità nonché da una bassa densità abitativa.

L'esame della carta dell'uso del suolo evidenzia che l'area considerata è per lo più area a pascolo naturale con presenza di aree boscate e cespugliate.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

3. INDIVIDUAZIONE DEI CORPI IDRICI A SPECIFICA DESTINAZIONE FUNZIONALE

D.Lgs. 152/06 - PARTE TERZA

Articolo 79 - Obiettivo di qualità per specifica destinazione

- 1. Sono acque a specifica destinazione funzionale:
 - a) le acque dolci superficiali destinate alla produzione di acqua potabile;
 - b) le acque destinate alla balneazione:
 - c) le acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci;
 - d) le acque destinate alla vita dei molluschi.
- 2. ... per le acque indicate al comma 1, è perseguito, per ciascun uso, l'obiettivo di qualità per specifica destinazione stabilito nell'Allegato 2 alla parte terza del presente decreto, fatta eccezione per le acque di balneazione.

Nei seguenti paragrafi sono stati individuati i corpi idrici a specifica destinazione come indicato nell'articolo 79, comma 1, del D.Lgs. 152/06.

3.1 Acque dolci superficiali destinate alla produzione di acqua potabile

Ad oggi, la Regione Abruzzo ha designato, con *Deliberazione della Giunta Regionale n.* **1996 del 15/09/1999** ("Designazione per la successiva classificazione delle acque potabili della Regione Abruzzo in applicazione del Decreto Legislativo 11 maggio 1999 n. 152"), le seguenti acque superficiali come destinate al consumo umano:

- Canale di Gronda: Località Fontenera (Comune di Isola del Gran Sasso);
- Torrente Acquafredda: Località Convento Maiella (Comune di Rapino) a 200 m a monte,
 2º attraversamento strada Rapino-Caramanico;
- Fiume Rio Torto: Località Montagna Spaccata (Comune di Alfedena) a circa 3 Km dalla sorgente;
- Fiume Trigno: Località Pietra Fracida (Comune di Lentella) a 10 Km dalla foce del fiume.

Successivamente, con *Deliberazione della Giunta Regionale n. 563 del 20/06/2005* ("Designazione per la successiva classificazione delle acque potabili della Regione Abruzzo in applicazione del Decreto Legislativo 11 maggio 1999 n. 152"), è stata approvata la designazione delle acque superficiali del *Fiume Vomano* ai fini della classificazione.

Sono in corso, a cura della Direzione Sanità della Regione, le procedure per la classificazione delle acque superficiali di cui sopra.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

3.2 Acque destinate alla balneazione

D.Lgs. 152/06 - PARTE TERZA

Articolo 83 - Acque di balneazione

1. Le acque destinate alla balneazione devono soddisfare i requisiti di cui al decreto del Presidente della Repubblica 8 giugno 1982, n. 470.

Il monitoraggio e la classificazione delle acque di balneazione, così come riportato nel D.Lgs. 152/06 sono stati effettuati a decorrere dalla stagione balneare 2010, con il Decreto legislativo 30 maggio 2008 n. 116 e con la successiva pubblicazione del Decreto Interministeriale 30/3/2010 (G. U. del 24 maggio 2010 S.O. 97), in recepimento della nuova Direttiva europea 2006/7/CE.

Per i risultati dell'ultimo monitoraggio pubblicato dal Ministero della Salute, e cioè quello relativo all'anno 2011, e per la conseguente classificazione delle acque per l'anno 2010 si rimanda al paragrafo 6.1.

Le acque destinate alla balneazione sono individuate nell'allegato cartografico "Carta della classificazione delle Acque di Balneazione per l'anno 2011 (monitoraggio 2010)", in scala 1:250.000, Tavola 2-2.

3.3 Acque dolci idonee alla vita dei pesci

D.Lgs. 152/06 - PARTE TERZA

Articolo 84 - Acque dolci idonee alla vita dei pesci

- 1. Le Regioni effettuano la designazione delle acque dolci che richiedono protezione o miglioramento per esser idonee alla vita dei pesci. Ai fini di tale designazione sono privilegiati:
 - a) i corsi d'acqua che attraversano il territorio di parchi nazionali e riserve naturali dello Stato, nonché di parchi e riserve naturali regionali;
 - b) i laghi naturali ed artificiali, gli stagni ed altri corpi idrici situati nei predetti ambiti territoriali;
 - c) le acque dolci superficiali comprese nelle zone umide dichiarate "di importanza internazionale" ai sensi della convenzione di Ramsar del 2 febbraio 1971, resa esecutiva con il decreto del Presidente della Repubblica del 13 marzo 1976, n. 448, sulla protezione delle zone umide, nonché quelle comprese nelle "oasi di protezione della fauna" istituite dalle regioni e province autonome ai sensi della legge 11 febbraio 1992, n. 157;
 - d) le acque dolci superficiali che, ancorché non comprese nelle precedenti categorie, presentino un rilevante interesse scientifico naturalistico ambientale e produttivo in quanto costituenti habitat di specie animali o vegetali rare o in via di estinzione ovvero in quanto sede di complessi ecosistemi acquatici meritevoli di conservazione o altresì sede di antiche e tradizionali forme di produzione ittica che presentano un elevato grado di sostenibilità ecologica ed economica.
- 5. Sono escluse dall'applicazione del presente articolo e degli articoli 85 e 86, le acque dolci superficiali dei bacini naturali o artificiali utilizzati per l'allevamento intensivo delle specie ittiche, nonché i canali artificiali adibiti a uso plurimo di scolo o irriguo e quelli appositamente costruiti per l'allontanamento dei liquami e di acque reflue industriali.

Il D.Lgs. 152/06, stabilisce i criteri generali e le metodologie per il rilevamento delle caratteristiche qualitative, per la classificazione ed il calcolo della conformità delle acque dolci superficiali idonee alla vita dei pesci salmonidi e ciprinidi.

Già a partire dal 1994, la Regione Abruzzo, con Legge Regionale n. 50 del 10 agosto 1994 e s.m.i., ha affidato il censimento delle acque dolci superficiali idonee alla vita dei pesci salmonidi

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

e ciprinidi (oltre che la loro successiva classificazione ed i relativi aggiornamenti, cfr. par. 6.2) all'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale".

La designazione dei tratti fluviali è avvenuta mediante due deliberazioni della Giunta Regionale ed in particolare la *Deliberazione n. 3237 del 04/09/1996 e la Deliberazione n. 1127 del 26/11/2001.*

I risultati del monitoraggio hanno permesso alla Regione di classificare le acque fluviali richiedenti protezione e miglioramento per essere idonee alla vita dei pesci.

L'elenco di tali tratti fluviali designati e la loro ubicazione sono riportati rispettivamente in **Tabella 3.1** e in **Figura 3.1**.

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 3.1 - Designazione dei tratti fluviali ai fini della classificazione in acque dolci superficiali idonee alla vita dei pesci

Provincia	Corso d'acqua	Bacino idrografico	Coordinate geografiche tratto designato	Data designazione
			Inizio: 42° 44' 01" N - 01° 06' 50" E	04/09/1996 [1]
	Fiume Salinello	Salinello	Fine: 42° 44' 33" N - 01° 07' 22" E Inizio: 42° 44' 33" N - 01° 07' 22" E Fine: 42° 45' 55" N - 01° 12' 16" E	26/11/2001 ^[2]
	Fiume Tordino	Tordino	Inizio: 42° 37' 45" N - 01° 09' 10" E Fine: 42° 37' 28" N - 01° 10' 07" E	04/09/1996 [1]
	Tidille Tordillo	Tordino	Inizio: 42° 37' 28" N - 01° 10' 07" E Fine: 42° 41' 30" N - 01° 20' 43" E	26/11/2001 [2]
	Rio Arno		Inizio: 42° 31' 15" N - 01° 05' 59" E Fine: 42° 31' 57" N - 01° 05' 57" E Inizio: 42° 31' 57" N - 01° 05' 57" E	04/09/1996 [1]
TE			Fine: 42° 33' 19" N - 01° 05' 46" E	26/11/2001 ^[2]
15	Torrente Mavone		Inizio: 42° 29' 36" N - 01° 09' 57" E Fine: 42° 30' 17" N - 01° 11' 39" E	04/09/1996 [1]
		.,	Inizio: 42° 30' 17" N - 01° 11'39" E Fine: 42° 33' 08"N - 01° 15' 23" E	26/11/2001 [2]
	Torrente Fiumetto	Vomano	Inizio: 42° 32' 56" N - 01° 11' 46" E Fine: 42° 33' 07" N - 01° 13' 24" E Inizio: 42° 33' 07" N - 01° 13' 24"E	04/09/1996 [1]
	Torrence Flametto		Inizio: 42° 33' 07" N - 01° 13' 24"E Fine: 42° 33'26" N - 01° 15' 19" E	26/11/2001 [2]
	Fiume Vomano		Inizio: 42° 36' 33" N - 01° 15' 31" E Fine: 42° 36' 47" N - 01° 15' 47" E	04/09/1996 [1]
	Fluitie Voltiatio		Inizio: 42° 36' 47" N - 01° 15' 47" E Fine: 42° 37' 19" N - 01° 33' 52" E	26/11/2001 [2]
	Firms Tayle		Inizio: 42° 26' 26" N - 01° 27' 58" E Fine: 42° 26' 09" N - 01° 28' 02" E	04/09/1996 [1]
	Fiume Tavo	Fino-Tavo-Saline	Fine: 42° 26' 09" N - 01° 28' 02" E Inizio: 42° 26' 09" N - 01° 28' 02" E Fine: 42° 24'21" N - 01° 31' 02" E	26/11/2001 [2]
	Fiume Fino		Inizio: 42° 28' 57" N - 01° 37' 02" E Fine: 42° 28' 59" N - 01° 38' 00" E	04/09/1996 [1]
	Fiume Aterno		Inizio: 42° 07' 14" N - 01° 22' 20" E Fine: 42° 10' 25" N - 01° 22' 41" E	26/11/2001 [2]
	E		Inizio: 42° 09' 54" N - 01° 22' 11" E Fine: 42° 10' 05" N - 01° 22' 18" E	04/09/1996 [1]
	Fiume Pescara		Inizio: 42° 10' 05" N - 01° 22' 18" E Fine: 42° 10' 25" N - 01° 22' 41" E	26/11/2001 [2]
	Fiume Tirino		Inizio: 42° 15' 10" N - 01° 21' 04" E Fine: 42° 11' 45" N - 01° 24' 18" E	26/11/2001 [2]
PE	Fiume Orta		Inizio: 42° 05' 29" N - 01° 34' 53" E Fine: 42° 08' 35" N-01° 33' 13" E	04/09/1996 [1]
	Tiume Orta	Atomo Docesia	Inizio: 42° 08' 35" N - 01° 33' 13" E Fine: 42° 09' 44" N-01° 32' 27" E	26/11/2001 [2]
	Fiume Orfento	Aterno-Pescara	Inizio: 42° 09' 41" N - 01° 35' 03" E Fine: 42° 09' 46" N - 01° 33' 45" E	04/09/1996 [1]
	Tidile Officies		Inizio: 42° 09' 46" N - 01° 33' 45" E Fine: 42° 09'44" N - 01° 32'28" E	26/11/2001 [2]
	Fiume Lavino		Inizio: 42° 14' 38" N - 01° 34' 06" E Fine: 42° 14' 48" N - 01° 33' 50"E	04/09/1996 [1]
	Tiume Lavino		Inizio: 42° 14' 48" N - 01° 33' 50"E Fine: 42° 15' 57" N - 01° 33' 50" E	26/11/2001 [2]
	Torrente Nora		Inizio: 42° 20' 46" N - 01° 26' 43" E Fine: 42° 21' 30" N - 01° 29' 40" E	04/09/1996 [1]
	TOTTETILE NOTA		Inizio: 42° 21' 30" N - 01° 29' 40" E Fine: 42° 20'59" N - 01° 39' 47" E	26/11/2001 [2]
	Fiume Foro	Foro	Inizio: 42° 13' 10" N - 01° 41' 53" E Fine: 42° 15' 03" N - 01 ° 44' 08" E	04/09/1996 [1]
СН	Fiume Aventino Sangro		Inizio: 41° 55' 02" N - 01° 41' 43" E Fine: 41° 58' 31"N - 01° 40' 42" E	04/09/1996 [1]

DIREZIONE LAVORI

REGIONE ABRUZZO

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Provincia	Corso d'acqua	Bacino idrografico	Coordinate geografiche tratto designato	Data designazione
			Inizio: 41° 58' 40" N - 01° 40' 53" E Fine: 42° 00' 59" N - 01° 42' 50" E	04/09/1996 [1]
	Fiume Verde		Inizio: 42° 05' 25" N - 01° 45' 02" E Fine: 42° 06' 22" N - 01° 47' 04" E	04/09/1996 [1]
	Fiume Avello		Inizio: 42° 08' 52" N - 01° 44' 44" E Fine: 42° 07 17" N - 01° 49' 12" E	04/09/1996 [1]
	Rio verde		Inizio: 41° 51' 49" N - 01° 52' 50" E Fine: 41° 54'05" N - 01° 52'41" E	04/09/1996 [1]
	Torrente Turcano		Inizio: 41° 54' 17" N - 01° 54' 06" E Fine: 41° 53' 52" N - 01° 54' 15" E	04/09/1996 [1]
			Inizio: 42° 14' 04" N - 02° 05' 23" E Fine: 42° 13' 47" N - 02° 05' 07" E	04/09/1996 [1]
	Fiume Sangro		Inizio: 42° 07' 26" N - 01° 55' 28" E Fine: 42° 07' 48" N - 01° 55' 53" E	04/09/1996 [1]
			Inizio: 42° 11' 08" N - 02° 01' 46" E Fine: 42° 11' 07" N - 02° 01' 20" E	04/09/1996 [1]
	Torrente Osento	Osento	Inizio: 42° 08' 43" N - 02° 04' 56" E Fine: 42° 09' 03" N - 02° 04' 49" E	04/09/1996 [1]
	Fiume Sinello	Sinello	Inizio: 42° 09' 01" N - 02° 11' 37" E Fine: 42° 09' 52" N - 02° 11' 34" E	04/09/1996 [1]
	Torrente Buonanotte	Buonanotte	Inizio: 42° 03' 31" N - 02° 16' 35" E Fine: 42° 04' 42" N - 02° 17' 59" E	04/09/1996 [1]
	Fiume Treste	T :	Inizio: 41° 56' 14" N - 02° 04' 58" E Fine: 41° 56'22" N - 02° 05'06" E	04/09/1996 [1]
	Fiume Trigno	Trigno	Inizio: 41° 50′ 56" N - 02° 08′ 28" E Fine: 41° 51′ 27" N - 02° 08′ 53" E	04/09/1996 [1]
	Lago Campotosto	.,	Inizio: 42° 31' 44" N - 00° 55' 05" E Fine: 42° 31'30" N - 00° 55' 17" E	04/09/1996 [1]
	Fiume Chiarino	Vomano	Inizio: 42° 29' 47" N - 00° 58' 28" E Fine: 42° 30' 17" N - 00° 57' 45" E	04/09/1996 [1]
	Fiume Vetoio		Inizio: 42° 21' 54" N - 00° 54' 20" E Fine: 42° 21' 50" N - 00° 54' 36" E	04/09/1996 [1]
	Fiume Vera		Inizio: 42° 22' 16" N - 01° 00' 25" E Fine: 42° 22' 07" N - 01 ° 00' 49" E	04/09/1996 [1]
	Fiume Aterno		Inizio: 42° 07' 03" N - 01° 22' 12" E Fine: 42° 07' 14" N - 01 ° 22' 20" E	04/09/1996 [1]
40	Fiditie Aterrio	Aterno-Pescara	Inizio: 42° 08' 27" N - 01° 17' 35" E Fine: 42° 07' 55" N - 01° 18' 44" E	04/09/1996 [1]
AQ	Torrente Tasso	Alemo-Pescara	Inizio: 41° 51' 29" N - 01° 26' 34" E Fine: 41° 52' 56" N - 01° 26' 17" E	04/09/1996 [1]
	Firms Contitionin		Inizio: 42° 04' 56" N - 01° 26' 26" E Fine: 42° 06' 35" N - 01° 25' 32" E	04/09/1996 [1]
	Fiume Sagittario		Inizio: 42° 56' 21" N - 01° 23' 15" E Fine: 41° 56' 36" N - 01° 22' 41" E	04/09/1996 [1]
	Fiume Tirino		Inizio: 42° 16' 54" N - 01° 20'07" E Fine: 42° 15' 10" N - 01° 21' 04" E	04/09/1996 [1]
	Fiume Sangro	Sangro	Inizio: 42° 11' 08" N - 01° 32' 12" E Fine: 41° 45' 01" N - 01° 36' 53" E	04/09/1996 [1]
	Torrente Lo Schioppo	Liri	Inizio: 41° 51' 06" N - 00° 57' 09" E Fine: 41° 51' 21" N - 00° 58' 19" E	04/09/1996 [1]

^[1] Deliberazione di Giunta Regionale n. 3237 del 4/9/96;

Per i risultati dei monitoraggi e le relative classificazioni delle acque si rimanda al paragrafo 6.2.

L'ubicazione dei tratti designati è individuata nell'allegato cartografico **"Carta dei tratti fluviali designati per il monitoraggio delle acque dolci idonee alla Vita dei Pesci"**, in scala 1:250.000, Tavola 2-3a.

Deliberazione di Giunta Regionale n. 1127 del 26/11/01.

SERVIZIO QUALITA' DELLE AQCUE

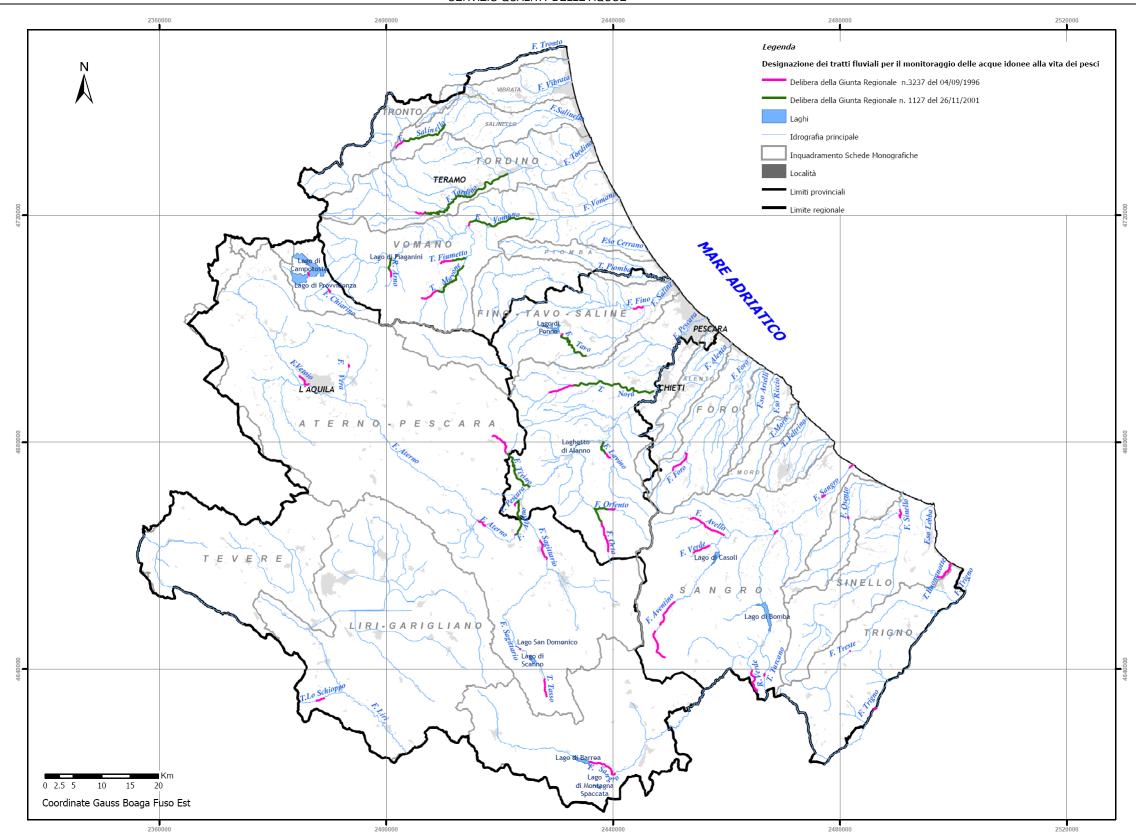


Figura 3.1: Designazione dei tratti fluviali

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

3.4 Acque destinate alla vita dei molluschi

D.Lgs. 152/06 - PARTE TERZA

Articolo 87 - Acque destinate alla vita dei molluschi

1. Le regioni, d'intesa con il Ministero delle politiche agricole e forestali, designano, nell'ambito delle acque marine costiere, che sono sede di banchi e popolazioni naturali di molluschi bivalvi e gasteropodi, quelle richiedenti protezione e miglioramento per consentire la vita e lo sviluppo degli stessi e per contribuire alla buona qualità dei prodotti della molluschicoltura direttamente commestibili per l'uomo.

Il D.Lgs. 152/06, che recepisce totalmente i contenuti del D.Lgs. 152/99 (a sua volta sostituitosi al D.Lgs. 131/92), stabilisce che le Regioni designino le acque richiedenti protezione e miglioramento per la vita dei molluschi.

Tale designazione da parte della Regione Abruzzo è avvenuta già nel 1996, con *Deliberazione* di Giunta Regionale n. 3235 del 4 settembre 1996, in base al D.Lgs. 131/92 ("Attuazione della direttiva 79/923/CEE relativa ai requisiti di qualità delle acque destinate alla molluschicoltura"), valutando i dati analitici dei monitoraggi effettuati sia in applicazione del D.P.R. 470/82 ("Attuazione della direttiva 76/160/CEE relativa alla qualità delle acque di balneazione") sia del "Programma globale di interventi per il monitoraggio delle acque di balneazione e per il contenimento dei fenomeni di eutrofizzazione anni 1989-90".

La suddetta deliberazione designa "tutte le acque antistanti la costa abruzzese come potenzialmente idonee all'allevamento ed alla raccolta dei molluschi" ed, in particolare, come:

- "Acque richiedenti miglioramento (art 1 comma 2)": tutte le acque marino-costiere comprese nella fascia che va da 500 m a nord e 500 m a sud della foce dei seguenti corsi d'acqua, fino alla distanza di 3000 m dalla costa:
 - Tronto
 - Vibrata
 - Salinello
 - Tordino
 - Vomano
 - Cerrano
 - Piomba-Saline
 - Pescara
 - Alento
 - Foro

- Arielli
- Riccio
- Moro
- Feltrino
- Sangro
- Osento
- Sinello
- Lebba
- Trigno

 "Acque richiedenti protezione (art. 1 – comma 3)": tutte le acque marino-costiere non comprese nelle fasce sopraelencate.

Così come previsto dalla normativa di riferimento, sono stati avviati monitoraggi sulla qualità delle acque (a partire dal 1996) e conseguentemente le stesse sono state classificate in richiedenti protezione o miglioramento. Per i risultati di tali attività si rimanda al paragrafo 6.3..

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4. PRESSIONI E IMPATTI SIGNIFICATIVI ESERCITATI DALL'ATTIVITÀ ANTROPICA SULLO STATO DELLE ACQUE SUPERFICIALI E SOTTERRANEE

Ai fini della valutazione delle pressioni⁶ e degli impatti⁷ significativi delle attività antropiche sulle acque, sono stati presi in considerazione:

- stima dell'inquinamento in termini di carico da fonte puntuale, con particolare riferimento agli scarichi di origine civile e industriale;
- stima dell'impatto da fonte diffusa, con particolare riferimento ai contributi agricoli e zootecnici;
- valutazione dell'inquinamento provocato da sostanze pericolose.

L'acquisizione dei dati disponibili, durante la fase conoscitiva, ha permesso di evidenziare una eterogeneità, a livello regionale, dei dati a disposizione, soprattutto in merito alla localizzazione geografica degli scarichi, alla potenziale presenza di sostanze pericolose negli scarichi stessi e, più in generale, alla caratterizzazione degli scarichi.

Di conseguenza sono stati utilizzati metodi indiretti per la valutazione dei carichi inquinanti di origine civile, industriale, zootecnica e agricola. Tale approccio, basato sull'utilizzo di fattori di carico inquinante disponibili in letteratura, consente di fornire indicazioni per l'analisi dello stato attuale, per una prima individuazione delle aree a maggiore criticità e una conseguente pianificazione degli interventi.

Nei paragrafi seguenti vengono descritte le metodologie adottate e la stima indiretta delle pressioni e degli impatti antropici significativi sullo stato delle acque.

In premessa a tali considerazioni si ritiene utile riportare una descrizione degli aspetti demografici e socio-economici, che caratterizzano il territorio regionale.

Negli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede Monografiche dei Corsi d'Acqua Superficiali"** è riportata, per ciascun corso d'acqua significativo, d'interesse e potenzialmente influente sui significativi, la caratterizzazione delle pressioni antropiche sul bacino.

QUADRO_CONOSCITIVO 4

_

Per *pressione* si intendono gli effetti diretti dello sviluppo delle attività umane, i fattori fisici che modificano lo stato dell'ambiente. Alcuni esempi possono essere gli effetti dell'agricoltura intensiva quali l'utilizzo di fitofarmaci e pesticidi o, più in generale, gli elevati consumi idrici, gli scarichi in corpi idrici compresi gli scarichi da impianti di depurazione delle acque reflue e la produzione e smaltimento rifiuti.

⁽Fonte: http://88.33.146.43/SIT4/Progetto_Bacino_Pilota/Report/Report_ITA/cap_5/5_1/Metodologia.html)

Per *impatto* si intendono gli effetti delle pressioni quali, ad esempio, gli effetti legati all'aumento della produzione agricola e dei cicli industriali. Essi descrivono gli effetti finali delle variazioni di stato (Fonte: http://88.33.146.43/SIT4/Progetto_Bacino_Pilota/Report/Report_ITA/cap_5/5_1/Metodologia.html)

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.1 Descrizione degli aspetti socio - economici

I seguenti paragrafi forniscono un'analisi degli aspetti fondamentali che caratterizzano la situazione socio – economica regionale.

4.1.1 Aspetti demografici

La caratterizzazione delle pressioni esercitate dalle attività antropiche sullo stato qualitativo e quantitativo delle acque non può prescindere dall'inquadramento demografico del territorio indagato.

Al numero totale degli abitanti residenti e fluttuanti è, infatti, strettamente interconnesso il numero degli Abitanti Equivalenti, dato di fondamentale importanza nelle analisi sui carichi inquinanti antropici.

La distribuzione territoriale delle classi demografiche condiziona, per giunta, la disponibilità ed estensione delle superfici destinate ad uso agricolo, fonte primaria di inquinamento, unitamente agli usi industriale e civile.

Secondo i risultati dell'ultima rilevazione censuaria ISTAT (14° Censimento generale della popolazione e delle abitazioni, riferito al 21 ottobre 2001), le persone residenti in Abruzzo sono 1.262.392, di cui circa il 30% risiede nella provincia di Chieti, circa il 24% nella provincia de L'Aquila, circa il 23% nella provincia di Teramo e circa il 23% nella provincia di Pescara.

La densità abitativa media regionale è di 117 abitanti per chilometro quadrato. La provincia a più alta densità abitativa è quella di Pescara, con 241 abitanti per chilometro quadrato, un numero doppio rispetto alla media regionale. Seguono le province di Teramo e Chieti, con una densità di 148 abitanti per chilometro quadrato e, ultima, la provincia de L'Aquila, con soli 59 abitanti per chilometro quadrato.

Più in dettaglio, i dati ISTAT dell'ultima rilevazione censuaria (21 ottobre 2001) riferiti ai singoli comuni sono stati utilizzati, per la produzione dei cartogrammi di **Figura 4.1** e **Figura 4.2** che riportano, rispettivamente, la distribuzione della popolazione e la densità abitativa dei singoli comuni.

La **Figura 4.1** mette in evidenza come la popolazione sia concentrata maggiormente lungo la fascia costiera e collinare e diminuisca verso l'entroterra con l'eccezione delle aree pianeggianti della conca de L'Aquila, le piane di Sulmona e di Avezzano e la zona teramana.

Allo stesso modo, dalla **Figura 4.2** si evince che le aree comunali caratterizzate dalle maggiori densità abitative sono per lo più quelle costiere.

Nell'entroterra si riscontra una generale diminuzione della densità abitativa, ad eccezione della zona del Teramano e delle piane intramontane dell'Aquilano, dell'Avezzanese e del Sulmonese, con densità abitative paragonabili a quelle rilevate nella fascia costiera.

I bacini idrografici della Regione sono, quindi, generalmente caratterizzati da una densità abitativa variabile in maniera crescente, man mano che si procede da monte verso valle. In

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

controtendenza, i bacini dei comprensori di Teramo, Avezzano, Sulmona e L'Aquila, hanno una densità abitativa che presenta una variabilità disomogenea.

SERVIZIO QUALITA' DELLE ACQUE

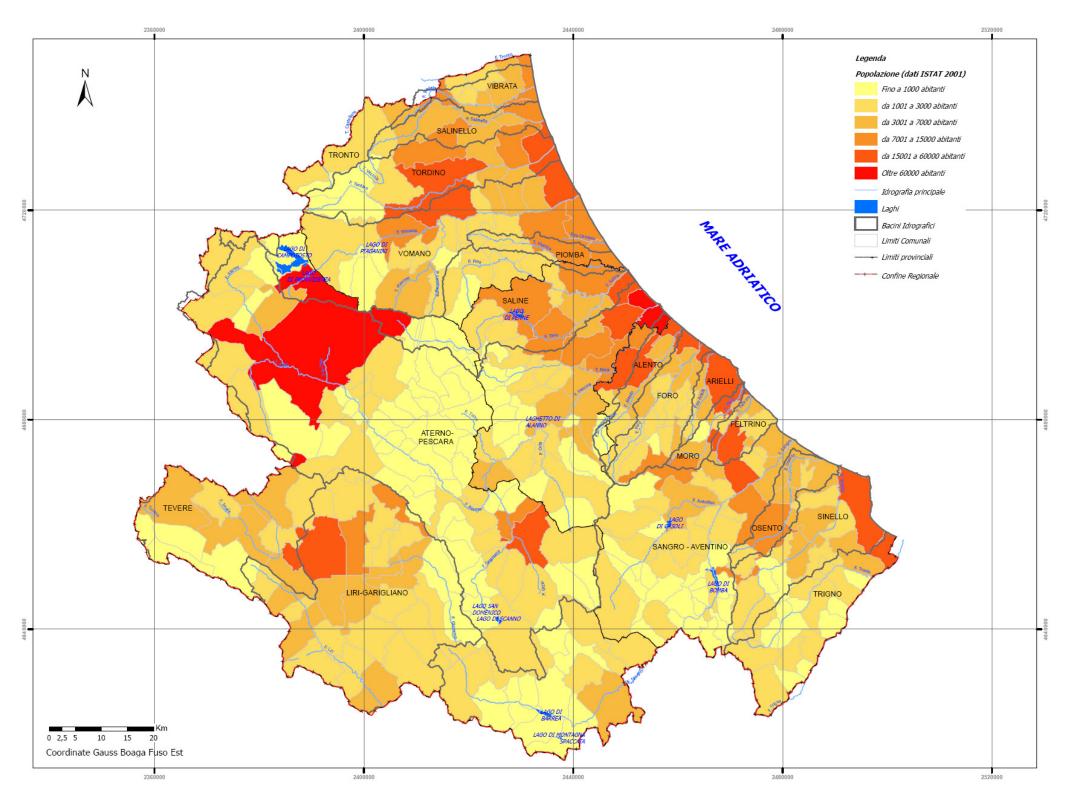


Figura 4.1: Inquadramento territoriale con distribuzione della popolazione nei comuni abruzzesi – Anno 2001 (ISTAT)

Comuni con densità abitativa (dati ISTAT 2001) compresa tra: Fino a 50.00 ab/kmq 50.01 e 100.00 ab/kmq 100.01 e 200.00 ab/kmq 200.01 e 400.00 ab/kmq 400.01 e 1000.00 ab/kmq Oltre 1000 ab/kmg Idrografia principale Bacini Idrografici Limiti Comunali --- Confine Regionale ------ Limiti provinciali ATERNO-PESCARA TEVERE TRIGNO Coordinate Gauss Boaga Fuso Est

Figura 4.2: Inquadramento territoriale con distribuzione della densità di popolazione nei comuni abruzzesi – Anno 2001 (ISTAT)

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.1.2 Comparto industriale e produttivo

Alla data di riferimento dell' 8° Censimento dell'Industria e dei Servizi (21 ottobre 2001) sono state rilevate in Abruzzo 56.010 imprese e 223.657 addetti tra personale dipendente e non, distribuiti tra le diverse attività economiche secondo quanto riportato in **Tabella 4.1**.

Le attività riconducibili al macrosettore dell'industria sono nettamente prevalenti sul commercio e sul terziario, secondo una linea confermata da tempo.

Su scala regionale, le imprese dedicate alle attività manifatturiere e alle costruzioni hanno un peso preponderante nel totale delle attività industriali, così come le attività commerciali e immobiliari coprono una gran fetta del terziario.

Tabella 4.1 - Imprese della Regione Abruzzo per sezione di attività economica, con riferimento al codice ISTAT della categoria - Anno 2001 (VIII Censimento dell'Industria e dei Servizi – ISTAT)

Categoria Istat	Attività Economiche	Imprese	Addetti
10.1 – 14.50.3	Estrazione di minerali	136	1.209
15.1 – 37.20.2	Attività manifatturiere	12.631	118.034
40.1 – 41.00.2	Produzione e distribuzione di energia elettrica, gas e acqua	132	2.101
45.1 – 45.5	Costruzioni	12.264	37.937
50.1 – 52.7.4	Commercio, riparazione di autoveicoli, motocicli e di beni personali e per la casa	30.847	64.376
	Totale	56.010	223.657

4.1.3 Comparto zootecnico

Sulla base dei dati tratti dal 5° Censimento generale dell'Agricoltura – ISTAT (22 ottobre 2000) le aziende agricole dell'Abruzzo che praticano l'allevamento di bestiame risultano essere 37.559. Gli allevamenti più diffusi (**Tabella 4.2**) sono quello del pollame (poco più di 3,6 milioni di capi) e quello degli ovini (281.613 capi). Seguono gli allevamenti dei suini (115.120 capi), dei bovini (82.862 capi), dei caprini (15.403 capi) e degli equini (8.436).

Tabella 4.2 - Numero di capi di bestiame delle aziende agricole secondo la specie suddiviso per provincia - Anno 2000 (Fonte: ISTAT)

Province	Numero di capi di bestiame								
Province	Bovini	Bufalini	Suini	Ovini	Caprini	Equini	Pollame		
L'Aquila	22.413	19	20.713	121.234	7.732	5.752	150.909		
Teramo	27.237	9	40.360	91.138	2.205	1.558	1.562.603		
Pescara	18.850	=	15.562	38.318	1.908	683	1.016.796		
Chieti	14.362	30	38.485	30.923	3.558	443	871.550		
Totale	82.862	58	115.120	281.613	15.403	8.436	3.601.858		

In riferimento alla suddivisione del territorio regionale in ambiti provinciali, relativamente alla distribuzione territoriale delle aziende con allevamenti, si può sinteticamente riassumere che:

 la provincia con il maggior numero di aziende zootecniche è la provincia di Chieti, seguita dalle province di Teramo, Pescara e L'Aquila;

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- il maggior numero di aziende con allevamenti di bovini, di suini e di ovini si trova nella provincia di Teramo;
- il maggior numero di aziende con allevamenti di caprini e di pollame è presente nella provincia di Chieti;
- il maggior numero di aziende con allevamenti di equini è presente nella provincia de L'Aquila.

4.1.4 Comparto agricolo

Alla data di riferimento dell'ultimo Censimento ISTAT (5° Censimento generale dell'Agricoltura - 22 ottobre 2000) sono state rilevate in Abruzzo 82.833 aziende agricole, zootecniche e forestali, con superficie totale occupata da dette aziende pari a 659.910 ettari, di cui 428.802 ettari costituiscono la Superficie Agricola Utilizzata – SAU (**Tabella 4.3**).

La provincia di Chieti presenta il maggior numero di aziende agricole (37.009), seguita dalle province di Teramo, Pescara e L'Aquila; la provincia con la più estesa superficie agricola totale è la provincia de L'Aquila, seguita, nell'ordine, dalle province di Chieti, Teramo e Pescara.

Il rapporto tra la SAU e la superficie totale occupata dalle aziende mostra che le aziende delle province di Chieti, Pescara e Teramo hanno più del 70% della loro superficie destinato a pratiche agricole. Le aziende della provincia de L'Aquila destinano, invece, mediamente il 56% della loro superficie alle pratiche agricole (**Tabella 4.3**).

Tabella 4.3 - Numero di aziende (agricole, zootecniche e forestali), superficie totale occupata dalle aziende e SAU suddivise per provincia – Anno 2000. Superfici in ettari (Fonte: ISTAT)

Province	Numero aziende	Superficie totale occupata da dette aziende (ha)	SAU (ha)	Rapporto SAU/ superficie totale (%)
L'Aquila	12.505	309.297	172.430	56
Teramo	17.780	119.756	84.707	71
Pescara	15.539	78.380	57.860	74
Chieti	37.009	152.477	113.805	75
Totale	82.833	659.910	428.802	65

La forma di utilizzazione dei terreni più diffusa, in termini di superficie utilizzata, è, su tutto il territorio regionale, quella dei seminativi (**Tabella 4.4**).

In merito alla ripartizione areale della SAU tra le quattro province, si può sinteticamente osservare quanto segue (**Tabella 4.4**):

- le più estese coltivazioni a seminativi sono distribuite entro il comprensorio teramano;
- le coltivazioni legnose agrarie sono più diffuse nella provincia di Chieti;
- le frazioni più consistenti di coltivazioni a prati permanenti e pascoli insistono sul territorio de L'Aquila.

Le colture boschive più estese insistono sul territorio della provincia de L'Aquila.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.4 - Ripartizione delle superfici aziendali per provincia e tipo di coltivazione - Anno 2000. Superfici in ettari (Fonte: ISTAT)

		Colture			
Province	Seminativi	Coltivazioni legnose agrarie	Prati permanenti e pascoli	Totale	boschive (ha)
L'Aquila	42.843	3.319	126.269	172.431	112.549
Teramo	57.813	10.913	15.981	84.707	23.019
Pescara	32.790	16.829	8.241	57.860	12.489
Chieti	49.431	51.681	12.693	113.805	19.917
Totale	182.877	82.742	163.184	428.803	167.974

La Superficie Agricola Utilizzata copre una estesa porzione della superficie territoriale in ciascuna delle province (**Tabella 4.5**).

Ulteriori indicatori del rapporto dell'attività agricola con il territorio (**Tabella 4.5**) sono forniti dal:

- rapporto tra la Superficie Agricola Utilizzata (SAU) e la superficie territoriale, rapporto questo che si attesta su valori medi, con punte massime nel pescarese;
- rapporto tra la Superficie Agricola Utilizzata (SAU) e la popolazione residente che evidenzia valori medio-bassi, ad eccezione dei valori ottenuti per l'aquilano.

Tabella 4.5 - Superficie territoriale, SAU e popolazione residente suddivise per provincia – Anno 2000. Superfici in ettari (Fonte: ISTAT)

Province	Superficie territoriale (ha)	SAU (ha)	Rapporto SAU/superficie territoriale (%)	Popolazione residente	Rapporto SAU/popolazione residente (%)
L'Aquila	503.446	172.431	34	297.424	58
Teramo	194.764	84.707	44	287.411	29
Pescara	122.467	57.860	47	295.481	20
Chieti	258.835	113.805	44	382.076	30

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.2 Valutazione delle pressioni e degli impatti esercitati dai carichi antropici di origine civile, industriale, zootecnica ed agricola

Nel presente capitolo sono descritte le procedure per mezzo delle quali sono stati stimati i carichi potenziali ed effettivi di origine civile, industriale, zootecnica ed agricola relativi a ciascun bacino della Regione Abruzzo.

4.2.1 Stima dei carichi potenziali ed effettivi di origine civile ed industriale

In questa sezione è introdotta la metodologia che permette di stimare i carichi potenziali ed effettivi di origine civile e industriale.

4.2.1.1 Definizioni

Di seguito si introducono alcune definizioni utili ad una migliore comprensione di quanto successivamente illustrato:

- Carichi potenziali: carichi prodotti potenzialmente dalla sorgente inquinante.
- Carichi effettivi: quota dei carichi potenziali residua ai trattamenti depurativi e quindi effettivamente sversante in un corpo idrico recettore.
- Agglomerato: la definizione di agglomerato è data dal D.Lgs. 152/06.

D.Lgs. 152/06 - PARTE TERZA

Articolo 74 - Definizioni

1. Ai fini della presente sezione si intende per:

n) agglomerato: l'area in cui la popolazione ovvero le attività economiche sono sufficientemente concentrate così da rendere possibile, e cioè tecnicamente ed economicamente realizzabile anche in rapporto ai benefici ambientali conseguibili, la raccolta e il convogliamento delle acque reflue urbane verso un sistema di trattamento di acque reflue urbane e verso un punto di scarico finale.

Per ogni agglomerato si definiscono:

il carico generato⁸ (espresso in Abitanti Equivalenti, AE)⁹ inteso come la "dimensione" dell'agglomerato, comprende il carico proveniente dalle aree servite e non servite da sistemi di collettamento. Tale carico non comprende i carichi derivanti da acque reflue industriali, successivamente definiti come "carichi industriali autorizzati allo scarico diretto" che, trattate separatamente, vengono direttamente scaricate nel corpo d'acqua superficiale;

⁸ Fonte: "Termini e definizioni della Direttiva sul Trattamento della Acque Reflue Urbane (91/271/CEE) – Documento redatto dai servizi della commissione europea DG Ambiente" – Novembre 2006

⁹ Ai sensi del D.Lgs.152/06, l'Abitante Equivalente (AE) è "*il carico organico biodegradabile avente una richiesta biochimica di ossigeno a 5 giorni (BOD₅) pari a 60 grammi di ossigeno al giorno″*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- il carico servito (AE) come il carico totale generato nell'agglomerato connesso ai sistemi di collettamento (non include il carico delle aree prive di collettamento);
- il carico trattato (AE) come il carico totale connesso ai sistemi di collettamento e recapitato in impianti di depurazione.

Inoltre si definiscono:

- i carichi industriali autorizzati allo scarico diretto come i carichi inquinanti di insediamenti produttivi che, non servendosi di alcun sistema depurativo consortile o comunale, sono altresì dotati di impianti autonomi di trattamento e, pertanto, chiedono alle province autorizzazione allo scarico diretto in corpo idrico superficiale. Tali aziende sono soggette al rispetto delle concentrazioni limite riportate nella Tabella 3 dell'Allegato 5 alla parte terza del D.lgs 152/2006.
- Spalmatura come l'uniforme distribuzione dei carichi sulla superficie territoriale di riferimento, sulla quale le sorgenti dei carichi stessi insistono.

4.2.1.2 Generalità

Per ogni bacino, la stima dei carichi potenziali ed effettivi di origine civile ed industriale è stata compiuta prendendo in considerazione l'agglomerato come unità territoriale di riferimento.

Tale scelta metodologica è stata dettata dalle seguenti considerazioni:

- l'utilizzo dei dati ISTAT, divisi per Comune, risulta affidabile per la stima dei carichi potenziali, ma tale approccio comporta grandi indeterminazioni nella definizione dei carichi effettivi da imputare ai diversi bacini idrografici, in quanto non si tiene conto in nessun modo delle reti fognarie e degli impianti di trattamento di acque reflue;
- per utilizzare i dati ISTAT, è necessaria la "spalmatura" dei carichi civili ed industriali sul territorio comunale, con conseguente schematizzazione assolutamente non reale della distribuzione dei carichi stessi ed erronea attribuzione dei carichi effettivi dei numerosi comuni versanti su bacini idrografici diversi.

Per tali motivi è stata scelta una metodologia alternativa che usa i dati desunti dalla preliminare ricognizione degli agglomerati con carico generato superiore a 2.000 abitanti equivalenti, effettuata, nel biennio 2004-2005, sulla base dei dati forniti dagli Enti d'Ambito e dai Gestori del Servizio Idrico Integrato, ai fini dell'evasione degli obblighi informativi definiti dal DM 18/09/02. I dati considerati, sebbene preliminari, si ritiene permettano una stima significativa dei carichi civili ed industriali afferenti a ciascun bacino idrografico. E' in corso l'aggiornamento del calcolo dei carichi sulla base della revisione della ricognizione degli agglomerati con carico generato superiore a 2.000 abitanti equivalenti, effettuata, ai sensi del DM 18/9/02, ad ottobre 2007.

SERVIZIO QUALITA' DELLE ACQUE

4.2.1.3 Dati di base

Le informazioni di partenza utilizzate ai fini della stima dei carichi potenziali civili ed industriali e di quelli effettivi sversati sono:

- dati forniti dagli Enti d'Ambito e dai Gestori del Servizio Idrico Integrato per ciascun agglomerato¹⁰ superiore a 2.000 AE, relativamente ai:
 - carichi generati espressi in AE (Cg);
 - carichi serviti espressi in AE (Cs);
 - carichi trattati espressi in AE (Ct);
 - impianti di depurazione (potenzialità di progetto e corpo idrico recettore);
- dati ISTAT relativi alla popolazione residente e fluttuante ed agli addetti delle diverse attività industriali;
- lista delle aziende autorizzate allo scarico diretto e relative informazioni sulla classe dipendenti e sul tipo di lavorazione (Fonte lista aziende autorizzate allo scarico diretto: Province; Fonte classe dipendenti: CRESA "annuario delle industrie abruzzesi 2005-2006").

4.2.1.4 Metodologia per la stima degli AE civili ed industriali potenziali

Per ogni bacino idrografico significativo, d'interesse e potenzialmente influente sui significativi, vengono calcolati gli AE distinti in civili ed industriali. Il numero totale degli AE deriva dalla somma di tre componenti:

- 1. AE potenziali degli agglomerati insistenti;
- 2. AE potenziali dei comuni insistenti non inclusi in nessun agglomerato;
- 3. AE potenziali delle aziende autorizzate allo scarico diretto in corpo recettore.

Qui di seguito si descrive nel dettaglio il calcolo delle tre componenti appena elencate introducendo le rispettive assunzioni ed ipotesi di base:

1. per ciascun agglomerato con carico generato superiore a 2000 AE, il numero di AE potenzialmente presenti sul bacino di insistenza è rappresentato dal carico generato. L'appartenenza di un agglomerato ad un bacino è stata valutata in base al recettore nel quale l'impianto di trattamento a servizio dello stesso scarica le proprie acque reflue. Per gli agglomerati serviti da più impianti, sversanti in differenti bacini, si è proceduto alla definizione di "sottoagglomerati", appartenenti ognuno al bacino in cui

Preliminare ricognizione degli agglomerati con carico generato superiore a 2000 AE (Direttiva 91/271/CEE), effettuata ai fini dell'evasione degli obblighi informativi (D.M. 18/09/02), biennio 2004-2005.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

sversano i relativi impianti di trattamento. A ciascun "sottoagglomerato" è stata attribuita una quota del carico generato totale dell'agglomerato, in proporzione alla potenzialità di progetto dell'impianto/i a servizio, sversante/i in quel bacino. Per ogni agglomerato (o sottoagglomerato), la distinzione tra AE civili ed AE industriali potenziali è stata compiuta servendosi dei dati ISTAT. Il rapporto tra gli AE civili dei comuni appartenenti ad un dato agglomerato e gli AE totali degli stessi comuni, definisce la % di AE civili e, per differenza, la % di AE industriali. Moltiplicando il carico generato per tali percentuali, è possibile distinguere il numero di AE civili da quelli industriali per ogni agglomerato;

2. i comuni che non appartengono a nessuno degli agglomerati superiori a 2000 AE, vengono considerati come agglomerati a sé. Per essi si è ricorso unicamente alle fonti ISTAT, a partire dalle quali sono stati calcolati gli AE civili ed industriali potenziali. Ai fini del calcolo dei carichi, per ciascun comune, il numero di AE civili potenziali è stato valutato come la somma del numero di abitanti residenti, considerati per 365 giorni all'anno, e del numero di abitanti fluttuanti, considerati per un giorno all'anno:

AE potenziali civili = residenti +(fluttuanti/365) (Formula 4.1)

Per il calcolo degli AE industriali potenziali, l'unità di riferimento è l'addetto, in quanto facente parte di un'industria considerata idroinquinante. Per ciascun comune, il numero totale di AE industriali potenziali è dato dalla sommatoria, estesa alle diverse categorie industriali, degli addetti di ciascuna categoria moltiplicati per il relativo coefficiente di conversione IRSA (Formula 4.2):

A.E. potenziali industriali = Σ_i (Numero di addetti_i * Coefficiente_i IRSA) con i = i-esima categoria industriale (Formula 4.2)

I fattori di carico IRSA-CNR (Valutazione dei carichi potenziali per i principali bacini idrografici italiani, IRSA-CNR Quaderno n. 90, Roma, 1991) sono stati ricavati considerando la nuova codifica ATECO5, predisposta dall'ISTAT (2002), per l'identificazione delle attività economiche (**Tabella 4.6**).

Gli AE civili e industriali potenziali, così calcolati per ogni comune, sono ripartiti sui bacini di insistenza, nell'ipotesi di una distribuzione omogenea degli AE sul territorio comunale, in base alla porzione di territorio comunale insistente su ogni bacino;

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.6 - Categorie ISTAT considerate per la stima dei carichi organici di origine industriale e relativi fattori di conversione (IRSA) in abitanti equivalenti (Fonte IRSA-CNR Quaderno 90/99)¹¹

Codice ateco5	Coefficiente di conversione in A.E.	Codice Ateco5	Coefficiente di conversione in A.E.
10.1.00-10.3.00	20.0	25.1.10-25.2.40	10.0
11.1.10-11.2.00	30.0	26.1.10-26.8.20	1.5
12.0.00	0.6	27.1.00-27.5.40	2.3
13.1.00-13.2.00	5.0	28.1.10-28.7.56	2.0
15.1.11-15.9.90	98.0	29.1.11-29.7.20	1.0
16.0.00	7.5	30.0.10-30.0.20	0.6
17.1.10-17.3.00	17.0	31.1.01-32.3.00	1.0
17.4.01-18.3.00	0.6	33.1.01-33.5.00	0.6
19.1.00-19.3.03	17.0	34.1.00-36.6.36	1.7
20.1.00-20.5.22	1.6	37.1.00-37.2.02	0.6
21.1.10-21.2.50	118.0	40.1.00-40.2.02	1.4
22.1.10-22.3.30	0.6	40.3.00-41.0.02	0.6
23.1.00-24.7.00	66.0		

3. gli AE potenziali relativi alle industrie autorizzate allo scarico diretto in corpo recettore sono stati calcolati per mezzo della classe dipendenti¹² di ciascuna azienda. Ad ogni classe corrisponde un intervallo di addetti; il valore considerato è quello medio, il quale è stato poi convertito in AE a mezzo dei coefficienti IRSA già introdotti, in base alla categoria industriale dell'azienda stessa.

4.2.1.5 Verifica della validità del metodo proposto

A conforto della validità della metodologia proposta è il risultato della verifica riportata nella **Tabella 4.7** a seguire, dove sono confrontati gli AE complessivamente presenti sul territorio abruzzese (fluttuanti e residenti), calcolati a mezzo delle fonti ISTAT, con il totale degli AE potenziali totali, derivante dalla stima appena esposta.

Tabella 4.7 – Confronto tra gli AE presenti sul territorio regionale e gli AE potenziali totali stimati

Bacino	AE Istat	AE stimati	AE Scarico Diretto
ALENTO	178358	88163	-
ARIELLI	65418	53060	4410
ATERNO-PESCARA	885179	526518	310130
FELTRINO	74968	83425	-
FORO	110452	97229	4168
LIRI-GARIGLIANO*	217244	111219	98360

Le categorie ISTAT indicate sono accorpate nelle attività economiche (ad esempio, la categoria 10.1.00 è compresa nell'attività economica 10.1 – 14.50.3 Estrazione di minerali)

¹² Fonte: CRESA "Annuario delle industrie abruzzesi 2005-2006"

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	AE Istat	AE stimati	AE Scarico Diretto
MORO	39316	12065	18220
OSENTO	46297	22176	34
PIOMBA	45855	8097	-
SALINE	182231	150126	152
SANGRO*	269939	265972	80380
SALINELLO	84881	26580	7769
SINELLO	119377	66277	-
TEVERE*	78915	37523	29015
TORDINO	285457	131025	80585
TRIGNO*	132032	147366	242
TRONTO*	53985	75574	21775
VIBRATA*	132910	112543	7680
VOMANO	286474	131692	50007
Totale	3.289.288	2.146.630	712.927

^{*} Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

Il totale degli AE derivante da tale stima è pari a 2.859.557 (2.146.630+712.927).

La differenza tra gli AE complessivi dei due approcci metodologici è pari a 429.731 AE, ovvero il numero di AE stimato con la metodologia proposta è circa l' 87 % di quello ISTAT. La differenza tra le due stime risulta accettabile anche in rapporto ai vantaggi introdotti dalla metodologia.

4.2.1.6 Stima dei carichi potenziali

Ricavato il numero di AE (civili ed industriali) potenzialmente presenti in ogni bacino, si è proceduto alla stima dei carichi potenziali prodotti in termini di COD, BOD₅, Azoto e Fosforo in tonnellate annue. Gli AE appartenenti agli insediamenti produttivi autorizzati allo scarico diretto in corpo idrico recettore vengono, in questa fase, assimilati agli AE industriali scaricati in rete fognaria. Il calcolo dei relativi carichi inquinanti è pertanto compiuto in maniera indistinta, così come spiegato di seguito.

BOD₅, COD, Azoto e Fosforo di origine civile

Seguendo la metodologia applicata dall'ENEA, Sezione PROT – IDR, nel Progetto Regi Lagni (luglio 2001), è possibile ottenere una stima quantitativa di ciascuno dei parametri (BOD₅, COD, Azoto e Fosforo) rappresentativi del carico civile.

Il carico civile potenziale, in termini di BOD₅, COD, Azoto e Fosforo, è il prodotto tra il numero di Abitanti Equivalenti di ogni comprensorio territoriale considerato e i fattori di carico (*Formula 4.3*), di cui alla **Tabella 4.8** (IRSA-CNR Quaderno 90, 1991):

Cp civile = Numero Abitanti Equivalenti * fattore di carico IRSA – CNR (Formula 4.3)

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.8 - Fattori di carico utilizzati per il calcolo dei carichi di origine civile (Fonte:IRSA-CNR – Quaderno 90, 1991)

Parametro	Fattori di carico (grammi/AE giorno)
BOD ₅	60
COD	120
Azoto	12
Fosforo	1.85

BOD₅, COD, Azoto e Fosforo di origine industriale

Seguendo la metodologia applicata dall'ENEA, Sezione PROT – IDR, nel Progetto Regi Lagni (luglio 2001), è possibile ottenere una stima quantitativa di ciascuno dei parametri rappresentativi (BOD₅, COD, Azoto e Fosforo) del carico industriale potenziale.

Ciascuna categoria industriale produce una quantità di BOD₅ e COD, in grammi per Abitante Equivalente al giorno, pari al prodotto tra il rispettivo numero di Abitanti Equivalenti e specifici fattori di carico. Il fattore di carico unitario per l'azoto è espresso in Kg per addetto all'anno.

Il numero di addetti degli agglomerati composti da più di un comune risulta dalla somma degli addetti dei rispettivi comuni di appartenenza, mentre nel caso in cui un comune risulta appartenere a più di un agglomerato, a ciascuno di essi si è attribuito una quota parte degli addetti del comune stesso, in proporzione alla dimensione dell'agglomerato espressa dal carico generato. Laddove un agglomerato è suddiviso in sottoagglomerati (insistentii su differenti bacini) a ciascuno di questi viene attribuita una quota parte del numero totale di addetti dell'agglomerato. Tale ripartizione viene eseguita in modo analogo a come effettuato per i carichi generati (così come descritto nel paragrafo 4.2.1.4).

Per i comuni non inclusi in alcun agglomerato, gli addetti vengono ripartiti sui vari bacini, nell'ipotesi di una distribuzione omogenea sul territorio comunale, in base alla porzione di comune insistente su ogni bacino, in modo analogo a come effettuato per gli AE.

Il carico potenziale unitario di fosforo industriale si assume pari al 10% del carico potenziale unitario di Fosforo civile relativo allo stesso comprensorio territoriale. I fattori di carico unitario per il calcolo dei carichi potenziali industriali sono mostrati nella seguente

Tabella 4.9.

Tabella 4.9 - Carico unitario per il calcolo dei carichi potenziali industriali (Fonte: ENEA PROT IDR)

BOD₅	COD		
(grammi/AE giorno)	(grammi/AE giorno)		
60	120		
Azoto	Fosforo		
(<i>Kg/addetto anno</i>)	(grammi/AE giorno)		
10	0,185		

SERVIZIO QUALITA' DELLE ACQUE

4.2.1.7 Risultati della stima dei carichi potenziali di origine civile ed industriale

Nella **Tabella 4.10** sono riportati i dati relativi alla stima dei carichi potenziali di origine civile e industriale, che insistono su ciascun bacino idrografico della Regione Abruzzo.

Tabella 4.10 – Stima dei carichi potenziali di origine civile e industriale¹³

Bacino	Tipologia carichi	Carichi potenziali prodotti (t/anno)			
		BOD₅	COD	N - Azoto	P - Fosforo
ALENTO	Civile	445,2	890,3	89,0	13,7
ALENTO	Industriale	643,6	1287,1	23,0	2,0
ADTELLY	Civile	111,9	223,8	22,4	3,4
ARIELLI	Industriale	257,5	514,9	6,0	0,8
ATERNO – PESCARA	Civile	5585,5	11171,0	1117,1	172,2
ATERNO - PESCARA	Industriale	12612,0	25224,0	290,1	41,7
FELTRINO	Civile	741,0	1481,9	148,2	22,8
FELIKINO	Industriale	914,2	1828,4	24,0	2,8
FORO	Civile	537,5	1074,9	107,5	16,6
FORO	Industriale	841,1	1682,1	36,0	2,6
LIRI – GARIGLIANO*	Civile	1483,0	2966,0	296,6	45,7
LIKI – GARIGLIANO	Industriale	3106,8	6213,5	64,7	9,6
MORO	Civile	118,2	236,4	23,6	3,6
MORO	Industriale	545,0	1090,0	7,3	1,7
OSENTO	Civile	356,7	713,4	71,3	11,0
OSENIO	Industriale	99,7	199,4	2,4	0,3
PIOMBA	Civile	79,0	158,0	15,8	2,4
PIOMBA	Industriale	98,6	197,2	6,0	0,3
CALTNE	Civile	2140,1	4280,3	428,0	66,0
SALINE	Industriale	1151,0	2301,9	79,2	3,5
SANGRO*	Civile	2390,9	4781,8	478,2	73,7
SANGRO	Industriale	5167,2	10334,4	134,6	15,9
CALTNELLO	Civile	273,2	546,3	54,6	8,4
SALINELLO	Industriale	479,1	958,2	48,7	1,5
SINELLO	Civile	874,3	1748,5	174,9	27,0
SINELLO	Industriale	577,2	1154,4	16,4	1,8
TEVERE*	Civile	442,8	885,6	88,6	13,7
IEVERE	Industriale	1014,4	2028,8	27,9	3,1
TORRING	Civile	1113,3	2226,6	222,7	34,3
TORDINO	Industriale	3521,0	7041,9	99,5	10,9
TRICNO*	Civile	1113,8	2227,6	222,8	34,3
TRIGNO*	Industriale	1571,3	3142,7	74,6	4,8
TRONTO*	Civile	651,4	1302,7	130,3	20,1
TRONTO*	Industriale	1480,6	2961,2	35,1	4,6
VIDDATA*	Civile	924,7	1849,4	184,9	28,5
VIBRATA*	Industriale	1708,2	3416,3	87,6	5,3
VOMANO	Civile	1378,5	2757,0	275,7	42,5
VOMANO	Industriale	2600,7	5201,4	119,2	8,0

^{*} Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

QUADRO_CONOSCITIVO

58

 $^{^{13}}$ I valori sono approssimati alla prima cifra dopo la virgola

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.2.1.8 Metodologia per la stima dei carichi effettivi di origine civile e industriale

Il carico effettivo è costituito dagli scarichi delle fosse Imhoff, dagli scarichi non trattati, dagli scarichi delle industrie autorizzate allo scarico diretto su recettore e dagli scarichi degli impianti di depurazione acque reflue. Il carico in uscita dagli impianti di depurazione acque reflue è calcolabile direttamente attraverso il prodotto tra le concentrazioni dei parametri inquinanti agli scarichi (misurate direttamente in ciascuno dei depuratori a servizio degli agglomerati della regione) e le portate realmente trattate.

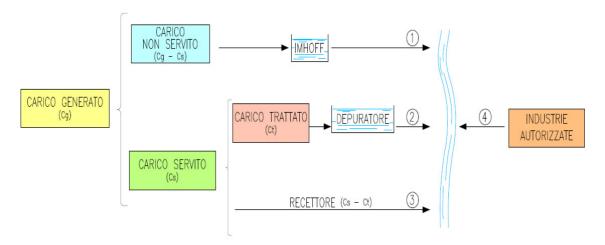
Tale procedimento di calcolo necessita di informazioni puntuali quali:

- monitoraggi (carichi in uscita) su tutti i depuratori a servizio di ogni agglomerato;
- informazioni di dettaglio relative alla copertura territoriale delle infrastrutture fognarie, tali da consentire la quantificazione dei carichi direttamente sversati nei recettori, ovvero generati da nuclei abitati non serviti da rete fognaria o serviti da collettamento non allacciato a impianti depurativi.

Non essendo disponibili tali informazioni in maniera organica e completa su tutto il territorio regionale si è proceduto ad una stima che risultasse il più possibile rappresentativa della realtà. Sarà obiettivo delle misure di questo piano effettuare una ricognizione completa e puntuale al fine di reperire dati precisi sulle infrastrutture depurative e sulle reti fognarie.

Volendo procedere ad una stima dei carichi effettivi di origine civile e industriale che, con le sue approssimazioni, risultasse tuttavia rappresentativa dell'ordine di grandezza dei carichi inquinanti realmente sversati nei corpi idrici recettori, la metodologia utilizzata si serve delle seguenti assunzioni:

- i carichi potenziali totali per ogni agglomerato, distinti in civili ed industriali, forniti dalle
 A.A.T.O., sono stati scomposti in tre componenti per tener conto dei differenti livelli di depurazione e delle diverse destinazioni:
 - L_{Imhoff} ovvero carichi che, non essendo serviti da sistemi di collettamento, vengono depurati in fosse Imhoff;
 - L_{trattato} ovvero carichi che, serviti da collettamento, vengono recapitati in impianto e quindi depurati.
 - L_{recettore} ovvero carichi sversanti direttamente nei corpi recettori, perché
 collettati in rete fognaria non allacciata a nessun impianto o carichi derivanti da
 infiltrazioni dovute a malfunzionamento cronico dei sistemi di collettamento;
- La ripartizione dei carichi potenziali nelle tre componenti sopra definite è stata effettuata per mezzo di percentuali ricavate sulla base dei dati forniti dalle A.A.T.O., relativamente agli agglomerati presenti sul territorio abruzzese.
 - Il rapporto tra carico servito (Cs) e carico generato (Cg) fornisce la percentuale servita da collettamento e, quindi, per differenza, si ottiene quella trattata in fosse Imhoff.



PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- Il rapporto tra carico trattato (Ct) e carico generato (Cg) è invece la frazione di carico che viene trattata in un impianto di depurazione.
- La percentuale del carico che si assume sversante direttamente sul recettore si
 ottiene per differenza tra il totale e le percentuali di carico in Imhoff e quelle
 trattate in impianto.
- Per i comuni che non risultano inclusi in alcun agglomerato, i carichi potenziali sono stati considerati interamente trattati in fosse Imhoff, ritenendo, in maniera del tutto cautelativa, che tali superfici comunali (per lo più situate in zone montane), non siano servite da un sistema di collettamento che permetta di convogliare i carichi prodotti in impianti di depurazione.

Il carico effettivo, per ogni bacino, risulta dalla sommatoria dei sequenti carichi:

- carico effettivo in uscita dalle fosse Imhoff, ottenuto dall'abbattimento del relativo carico in ingresso definito sopra (L_{Imhoff}) a mezzo di specifici coefficienti di abbattimento caratteristici definiti per ogni inquinante Tabella 4.11;
- 2) carico effettivo in uscita dagli impianti di depurazione, ottenuto dall'abbattimento del relativo carico potenziale in ingresso sopra definito (L_{trattato}) a mezzo di specifici coefficienti di abbattimento definiti per ogni parametro inquinante in base alla taglia dell'impianto Tabella 4.11. Si noti che, per gli agglomerati serviti da impianti di taglia diversa, il carico in ingresso agli impianti è stato assegnato in proporzione alla potenzialità degli stessi;

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.11 - Efficienze di abbattimento per le differenti taglie di impianto 14

Impianto	Parametro	Abbattimento (%) 15
IMHOFF	BOD₅	17
	COD	17
	Azoto	5,3
	Fosforo	7
Potenzialità (P)	Parametro	Abbattimento (%) 16
	BOD ₅	56
D 4 2 000 AE	COD	53
P < 2.000 AE	Azoto	20
	Fosforo	20
	BOD ₅	64
3 000 · B · 10 000	COD	60
2.000 < P < 10.000	Azoto	40
	Fosforo	25
	BOD ₅	80
10.000 - D - 100.000	COD	75
10.000 < P < 100.000	Azoto	60
	Fosforo	25
	BOD ₅	80
D . 100 000	COD	75
P > 100.000	Azoto	60
	Fosforo	60

- 3) carico sversante direttamente nel corpo recettore (**L**_{recettore}) e non trattato da alcun impianto di depurazione definito come sopra;
- 4) carico sversato dalle industrie autorizzate allo scarico diretto in corpo idrico recettore

Un metodo certo e consolidato di calcolo dei carichi effettivi degli insediamenti industriali direttamente sversanti a corpo d'acqua superficiale deriva dall'uso del catasto degli scarichi industriali redatti di concerto tra le province e le ARPA. Le informazioni tratte da tale catasto, utili al calcolo dei carichi in questione sono:

- anagrafica Azienda;
- caratteristiche impianto;

 $^{^{14}}$ Percentuali di abbattimento proposte dal Prof. P. Battistoni – Università Politecnica delle Marche

La percentuale di abbattimento per le fosse Imhoff, è supposta pari al 30% dei TSS (solidi sospesi totali). Tale riduzione è analoga a quanto indicato nelle "norme tecniche regionali in materia di trattamento degli scarichi di acque reflue..." (BUR Regione Lombardia n°16, 20 Aprile 2006). Per gli altri macroinquinanti, la rimozione è calcolata di conseguenza, sulla base della composizione media percentuale dei TSS

Le percentuali di abbattimento esposte sono relative a valori prestazionali proposti, per ogni taglia di impianto, sulla base delle percentuali di abbattimento riportate nella Tabella 1 dell'Allegato 5 al D.Lgs 152/06. I coefficienti per l'Azoto e il Fosforo sono supposti in base alla taglia dell'impianto

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

 caratteristiche scarico: volume scaricato, recettore, tipologia del refluo (acque di raffreddamento, di processo etc.).

Il calcolo dei carichi effettivi è ottenibile come sommatoria dei carichi puntuali, ciascuno ottenuto moltiplicando la portata scaricata per le concentrazioni agli scarichi.

In via preliminare, non essendo disponibili, in maniera organica e completa sul territorio regionale, le informazioni necessarie e soprattutto quelle relative alle quantità scaricate dalle attività industriali, si è scelto di adottare la seguente metodologia di calcolo indiretto che divide la stima degli inquinanti organici (BOD₅ e COD) da quella dei nutrienti (Azoto e Fosforo).

BOD₅ e COD:

- Le portate scaricate da ciascuna azienda sono calcolate come prodotto degli AE relativi alla stessa azienda, per la dotazione idrica assunta pari a 250 I/AE/d. Tale prodotto viene corretto a mezzo di un coefficiente moltiplicativo di sversamento in rete pari a 0.7 che tiene conto della % di acqua mediamente utilizzata per il raffreddamento.
- Le concentrazioni in uscita vengono assunte pari ai limiti previsti dalla normativa (Tab.3 Allegato 5 D.lgs152/2006 scarico in acque superficiali) e quindi: COD 160 mg/l, BOD₅ 40 mg/l.
- Il prodotto delle portate per le concentrazioni appena definite conduce al calcolo dei carichi di BOD₅ e COD sversati da ciascuna azienda nel relativo corpo idrico recettore in tonnellate all'anno.

Azoto e Fosforo:

La distinzione tra la stima dei nutrienti e quella dei macroinquinanti organici nasce dall'esigenza di valutare in modo realistico l'entità dei carichi nutrienti derivanti dai comparti industriali, i quali producono inquinanti organici piuttosto che nutrienti.

I carichi effettivi di azoto e fosforo derivanti dalle industrie autorizzate allo scarico diretto in corpo recettore sono stati stimati come l'80% dei relativi carichi potenziali; quindi si assumono, in via cautelativa, coefficienti di rimozione pari al 20% affini a quelli adottati per gli impianti di taglia inferiore a 2000 AE.

SERVIZIO QUALITA' DELLE ACQUE

4.2.1.9 Risultati della stima dei carichi effettivi di origine civile ed industriale

In **Tabella 4.12** sono riportati i valori derivanti dalla stima dei carichi effettivi di origine civile e industriale, prodotti in ciascun bacino idrografico della Regione Abruzzo.

Tabella 4.12 - Stima dei carichi effettivi di origine civile e industriale¹⁷

Bacino	Tipologia carichi	Carichi effettivi prodotti (t/anno)			
	Cariciii	BOD ₅	COD	N - Azoto	P - Fosforo
ALENTO	Civile	202,2	432,7	58,7	11,3
ALENTO	Industriale	281,1	605,7	14,5	1,6
ARIELLI	Civile	87,2	175,7	20,2	3,1
ARIELLI	Industriale	131,5	288,6	5,3	0,7
ATERNO – PESCARA	Civile	2298,3	4980,4	675,9	133,0
ATERNO - PESCARA	Industriale	3052,9	8112,4	183,7	32,8
FELTRINO	Civile	426,2	888,0	108,0	19,3
FELIKINO	Industriale	579,2	1192,2	17,8	2,4
FORO	Civile	352,1	720,6	88,5	14,3
FORO	Industriale	497,9	1040,7	28,0	2,2
LIRI - GARIGLIANO*	Civile	664,5	1420,3	203,9	36,7
LIKI - GARIGLIANO	Industriale	632,8	1834,9	39,1	7,6
MORO	Civile	76,2	156,2	19,1	3,1
MORO	Industriale	109,5	321,4	5,5	1,3
OSENTO	Civile	216,9	447,8	55,6	9,3
OSENTO	Industriale	82,2	164,6	2,2	0,3
PIOMBA	Civile	46,5	96,3	12,8	2,1
PIOMBA	Industriale	54,9	114,5	4,8	0,3
SALINE	Civile	634,9	1453,4	212,9	33,7
SALINE	Industriale	394,3	879,5	50,6	2,0
CANCDO*	Civile	1483,5	3058,2	365,9	63,7
SANGRO*	Industriale	2357,6	5238,8	74,0	13,5
CALTNELLO	Civile	88,5	199,6	29,0	6,5
SALINELLO	Industriale	127,7	319,4	27,6	1,2
CINCLLO	Civile	524,7	1085,8	128,6	23,3
SINELLO	Industriale	322,0	671,1	11,3	1,5
TEVERE*	Civile	208,6	443,5	64,6	10,9
IEVERE"	Industriale	229,8	634,9	20,9	2,5
TORDINO	Civile	452,3	984,4	126,4	27,8
IORDINO	Industriale	868,3	2282,2	58,1	8,7
TRIGNO*	Civile	495,2	1058,5	136,4	20,8
IKTGIAO	Industriale	487,9	1106,1	37,2	2,4
TRONTO*	Civile	342,3	721,1	85,4	17,1
IKONIO	Industriale	695,1	1537,1	28,1	3,9
VIDDATA*	Civile	647,7	1326,6	148,6	25,5
VIBRATA*	Industriale	1137,7	2352,4	69,4	4,7
VOMANO	Civile	695,6	1464,8	187,6	35,3
VOMANO	Industriale	864,6	2068,5	80,8	6,5

^{*} Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

Gli allegati monografici al PTA Relazione Generale – Sezione V R1. 5 - **"Schede Monografiche dei Corsi d'acqua Superficiali"** riportano, per ciascun corso d'acqua significativo, d'interesse e potenzialmente influente sui significativi, tabelle in cui sono riassunti i risultati della valutazione dei carichi inquinanti potenziali, per ciascun bacino, e i relativi carichi effettivi stimati, ottenuti dall'abbattimento dei carichi potenziali a mezzo dei coefficienti di rimozione medi.

 $^{^{}m 17}$ I valori sono approssimati alla prima cifra dopo la virgola

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.2.2 Pressioni antropiche dovute ai carichi di origine industriale e civile - Attivazione del monitoraggio finalizzato al controllo delle sostanze pericolose

Al fine di dare attuazione al Decreto 367/03 "Regolamento concernente la fissazione di standard di qualità nell'ambiente acquatico per le sostanze pericolose, ai sensi dell'art. 3, comma 4, del D.Lgs 152/99" e alla Direttiva 2000/60, è stato realizzato, attraverso apposita Convenzione stipulata con l'ARTA Abruzzo, di uno specifico progetto finalizzato al "Censimento, raccolta dati e redazione dell'elenco delle sostanze pericolose presenti nel proprio territorio e delle relative fonti di origine (art. 2 comma 4 decreto 367/03)".

Nell'ambito di tale progetto, attivato a gennaio 2006 e concluso a marzo 2010, è stato integrato il censimento delle attività industriali (CCIAA, 2002), già effettuato nell'ambito della redazione del PTA, attraverso le informazioni relative a:

- provvedimenti di autorizzazione allo scarico rilasciati dalle Province;
- provvedimenti di autorizzazione allo scarico in pubblica fognatura rilasciati dal Gestore del Servizio Idrico Integrato, o, dove lo stesso non è ancora operante, dal Comune;
- dati relativi al campione di aziende indagate nel "progetto siti inquinati";
- informazioni reperite presso i Consorzi di Sviluppo Industriale, le Unioni Provinciali Industriali, la Medicina del Lavoro, la Regione e la Prefettura per le aziende a rischio di incidente rilevante.

L'obiettivo della fase iniziale di censimento è stato quindi la raccolta per tutte le attività industriali, che utilizzano sostanze pericolose nel loro ciclo produttivo, dei dati relativi a:

- dati anagrafici delle aziende;
- tipologia attività industriale;
- recapito dello scarico (suolo, corso d'acqua superficiale, fognatura, ecc.);
- sostanze pericolose (D.M. 367/03) potenzialmente presenti nello scarico;
- provvedimento di autorizzazione allo scarico (valori limite di emissione autorizzati e altre
- prescrizioni);
- coordinate geografiche del punto di scarico e dell'impianto di depurazione;
- tipo di depurazione e dati sugli impianti di depurazione (tipologia, potenzialità ecc.);
- dati sullo scarico (volume totale acque reflue scaricate in m³/anno, portata media annua m³/s, portata massima annua m³/s);
- sistemi di raccolta delle acque meteoriche;
- fonti di approvvigionamento di acqua e quantità prelevate e utilizzate;
- risultati dei controlli effettuati sullo scarico.

Al termine della fase di censimento è stato predisposto l'elenco delle sostanze pericolose presenti nel territorio regionale e delle relative fonti di origine.

Sulla base dell'elenco predisposto è stato redatto un piano di monitoraggio, al fine di verificare sui corsi d'acqua superficiali il rispetto degli standard di qualità di cui al DM 367/03. Le attività di monitoraggio sono iniziate a gennaio 2007 e si sono concluse a dicembre 2009. Il piano di monitoraggio è stato redatto secondo i criteri seguenti:

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- i corsi d'acqua che risultano interessati, in seguito al censimento di cui sopra, da potenziale scarico di sostanze pericolose sono oggetto di monitoraggio specifico;
- la frequenza di monitoraggio dei parametri individuati è trimestrale e i metodi analitici utilizzati sono quelli APAT – IRSA- CNR;
- il monitoraggio delle sostanze pericolose viene effettuato in corrispondenza delle stazioni di qualità già attive ai sensi dell'Allegato I al D.Lgs. 152/06, dove la posizione delle stesse sia significativa in relazione all'ubicazione degli scarichi censiti. In caso contrario, sono state inserite nuove stazioni di monitoraggio in sezioni più rappresentative;
- i risultati delle attività di monitoraggio sui corsi d'acqua vengono associati ai risultati delle attività di autocontrollo sugli scarichi, effettuate dai titolari degli stessi, ai sensi dell'Allegato B al D.M. 367/03, nonché a quelli delle attività di controllo esterno, che l'ARTA esercita sugli stessi scarichi nell'ambito dei propri compiti istituzionali e che, in seguito al censimento di cui al punto 1), ha indirizzato con maggiore regolarità sugli scarichi di sostanze pericolose censiti.

Il progetto è stato attivato il 1° Gennaio 2006 ed ha avuto la durata di 36 mesi, al termine dei quali, tramite i dati sulle fonti d'inquinamento reperiti e l'analisi dei dati di monitoraggio, è stato possibile implementare l'analisi delle pressioni sullo stato qualitativo delle acque, dovuta alle fonti di inquinamento da sostanze pericolose, e la valutazione del rischio di non raggiungimento degli obiettivi di qualità di cui al DM 131/08 (cfr. elaborato A1.9 "*Individuazione dei corpi idrici superficiali e analisi delle pressioni ai sensi del DM 131/08*").

Relazioni, elaborati cartografici e risultati analitici di tale progetto sono depositati presso gli Uffici regionali e costituiscono parte integrante del presente Piano.

4.2.3 Carichi potenziali di origine zootecnica

Il carico di origine zootecnica corrisponde al carico prodotto dalle attività di allevamento del bestiame.

BOD₅, COD, Azoto e Fosforo di origine zootecnica

Per la stima del carico potenziale di origine zootecnica è stata applicata la procedura proposta dall'ENEA (ENEA - PROT IDR. Regi Lagni, luglio 2001), considerando quale parametro di riferimento il numero di capi di bestiame allevati, secondo i dati forniti per comune dall'ultimo censimento ISTAT (5° Censimento generale dell'Agricoltura - 22 ottobre 2000).

Il carico zootecnico potenziale si esprime in Kg/anno e si ottiene moltiplicando il numero di capi censiti per gli indici di produzione annuale di BOD₅, COD, Azoto e Fosforo nelle deiezioni animali (**Tabella 4.13**):

Cp zootecnico_j = \sum_i (Capi_i * Fattore di carico_{ij}) (Formula 4.4) con i = i-esima categoria zootecnica j = j-esimo parametro

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.13 – Carichi potenziali per capo allevato, suddivisi nelle categorie zootecniche considerate (Fonte ENEA)

Categoria zootecnica	Parametro	Fattori di carico (kg/anno/capo)
Bovini – bufalini	BOD ₅	159.7
	COD	343.4
	Azoto	54.8
	Fosforo	7.40
	BOD ₅	35.1
Ovini caprini	COD	75.5
Ovini – caprini	Azoto	4.9
	Fosforo	0.80
	BOD ₅	159.3
Equipi	COD	342.5
Equini	Azoto	62
	Fosforo	8.70
	BOD ₅	38.4
Cuini	COD	82.6
Suini	Azoto	11.3
	Fosforo	3.80
	BOD₅	3.9
Dollama	COD	8.4
Pollame	Azoto	0.48
	Fosforo	0.17

4.2.4 Stima dei carichi effettivi di origine zootecnica

Seguendo ancora la metodologia applicata dall'ENEA Sezione PROT – IDR nel Progetto Regi Lagni (luglio 2001), mediante un'ipotesi semplificativa dai carichi potenziali si ricavano i carichi effettivamente sversati sui corpi idrici superficiali e sotterranei (Formula 4.5), moltiplicando i carichi potenziali per determinati coefficienti di sversamento relativo ad ogni parametro (**Tabella 4.14**) e per i fattori correttivi relativi alle acque superficiali e sotterranee (

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.15 e

Tabella 4.16), definiti in funzione dei parametri, che maggiormente influenzano i fenomeni di ruscellamento e percolazione e che sono:

- Precipitazione;
- Pendenza;
- Permeabilità del suolo.

Carico inquinante zootecnico effettivo =

Carico potenziale * Coefficiente di sversamento * Fattori correttivi (Formula 4.5)

Tabella 4.14 - Coefficienti di sversamento applicati per la valutazione del carico zootecnico effettivo (Richardson e Gostick - Fonte: ENEA – PROT - IDR)

Parametro	Coefficienti di sversamento (% riferite al carico potenziale) Acque superficiali	Coefficienti di sversamento (% riferite al carico potenziale) Acque sotterranee
BOD₅	1.0 %	-
COD	2.5 %	-
Azoto	17 %	22 %
Fosforo	3.0 %	0.1 %

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.15 - Fattori correttivi per la stima degli sversamenti di Azoto e Fosforo nelle acque superficiali (Fonte: ENEA PROT-IDR)

Parametro influente Precipitazione media annua (mm)	Fattore correttivo	Parametro influente Pendenza media	Fattore correttivo	Parametro influente Permeabilità del suolo	Fattore correttivo
< 800	0,8	< 0.2°	0,8	Alta	8,0
800 - 1200	1	0.2°-1.4° e > 8°	1	Moderata	1
> 1200	1,25	1.4° - 8°	1,25	Bassa	1,25

Tabella 4.16 - Fattori correttivi per la stima degli sversamenti di Azoto nelle acque sotterranee (Fonte: ENEA PROT-IDR)

Parametro influente Precipitazione media annua (mm)	Fattore correttivo	Parametro influente Permeabilità del suolo	Fattore correttivo
< 800	0,6	Alta	1,35
800 – 1200	1	Moderata	1
> 1200	1,5	Bassa	0,8

Negli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede Monografiche dei Corsi d'acqua Superficiali"** è riportato, per ciascun bacino idrografico dei corsi d'acqua significativi, d'interesse e potenzialmente influenti sui significativi, il dettaglio dei carichi zootecnici potenziali ed effettivi in termini di BOD₅, COD, Azoto e Fosforo.

Il settore con le maggiori concentrazioni di Azoto e Fosforo di origine zootecnica coincide con la porzione settentrionale del territorio regionale. I bacini dei Fiumi Vibrata, Salinello, Tordino, Vomano, Piomba e Saline, interamente racchiusi in tale dominio, presentano:

- concentrazioni di Azoto generalmente maggiori di 6.000 Kg/anno, mediamente comprese tra i 12.000 e i 24.000 Kg/anno, localmente anche maggiori di 48.000 Kg/anno;
- concentrazioni di Fosforo mediamente comprese tra i 240 e i 480 Kg/anno, localmente anche dell'ordine di 1.800 Kg/anno o più.

Nei settori centrale e meridionale della regione, le concentrazioni di Azoto e Fosforo di origine zootecnica sono generalmente minori, rispettivamente di 3.000 Kg/anno e di 120 Kg/anno. Anche i bacini dei corsi idrici a maggiore sviluppo lineare si inquadrano in tale dominio e presentano le stesse caratteristiche dei corsi minori, fatte salve alcune eccezioni (es. il distretto di Casoli nel bacino del Sangro e l'aquilano per il bacino dell'Aterno-Pescara).

4.2.5 Carichi potenziali di origine agricola

Il carico agricolo è, per sua natura, la componente più significativa dell'inquinamento da nutrienti (azoto e fosforo); le pratiche agricole attualmente in uso, infatti, prevedono l'impiego, oltre che di insetticidi ed erbicidi, di fertilizzanti di sintesi, poveri di materia organica ed

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

estremamente ricchi di nutrienti, a differenza del letame. Come conseguenza il carico agricolo è valutato, non in termini di BOD₅ e COD, ma in termini di azoto e fosforo.

Il calcolo del *carico agricolo potenziale* è stato riferito alla Superficie Agricola Utilizzata - SAU, relativa ad ogni coltura, secondo i dati, disponibili per comune, riportati nell'ultimo censimento ISTAT (5° Censimento ISTAT dell'Agricoltura - Anno 2000).

Moltiplicando la Superficie Agricola Utilizzata (SAU) relativa a ogni tipo di coltura per gli specifici fattori di carico (*IRSA – CNR Quaderno 90, 91*) riportati in **Tabella 4.17** si ottiene una stima del carico agricolo potenziale, in termini di chilogrammi annui di Azoto e Fosforo per ettaro.

Nelle valutazioni sono state considerate le sole categorie agricole di **Tabella 4.17**, perché esse, nell'insieme, rappresentano a tutti gli effetti la totalità del carico di Azoto e Fosforo di origine agricola.

Tabella 4.17 - Fattori di carico, in termini di chilogrammi di Azoto e Fosforo per anno e per ettaro, delle quattro principali categorie agronomiche desunte dalla carta dell'uso del suolo

Categoria agronomica	Parametro	Fattori di carico (Kg/anno/ha)
Colture ortive	Azoto	120
Collule of tive	Fosforo	55
Colture cerealicole	Azoto	200
Colture cerealicole	Fosforo	40
Colture arboree	Azoto	100
Colcule al bolee	Fosforo	30
Drata passala	Azoto	40
Prato-pascolo	Fosforo	35

4.2.6 Stima dei carichi effettivi di origine agricola

I carichi potenziali sono stati trasformati in *carichi agricoli effettivi* (*Formula 4.6*), moltiplicandoli per coefficienti di sversamento definiti, per le acque superficiali e per le acque sotterranee, in funzione della tipologia colturale e del tipo di fertilizzante (**Tabella 4.18**) e per i fattori correttivi relativi alle acque superficiali e sotterranee (**Tabella 4.19** e **Tabella 4.20**), che tengono conto di:

- Precipitazioni medie annue;
- Pendenza;
- Permeabilità del suolo.

Carichi effettivi agricoli = Carico potenziale * Coefficiente di sversamento * Fattori correttivi (Formula 4.6)

Tabella 4.18 - Coefficienti di sversamento applicati per la valutazione del carico agricolo effettivo (Fonte: ENEA –PROT-IDR)

Parametro	Coefficienti di sversamento (% Riferite al carico potenziale) Acque superficiali	Coefficienti di sversamento (% Riferite al carico potenziale) Acque sotterranee
Azoto	20 %	26 %
Fosforo	3.0 %	0.1 %

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.19 - Fattori correttivi per la stima degli sversamenti di Azoto e Fosforo nelle acque superficiali (Fonte: ENEA PROT-IDR)

Parametro influente Precipitazione media annua (mm)	Fattore correttivo	Parametro influente Pendenza media	Fattore correttivo	Parametro influente Permeabilità del suolo	Fattore correttivo
< 800	0,8	< 0.2°	0,8	Alta	0,8
800 – 1200	1	0.2°-1.4° e > 8°	1	Moderata	1
> 1200	1,25	1.4° - 8°	1,25	bassa	1,25

Tabella 4.20 - Fattori correttivi per la stima degli sversamenti di Azoto nelle acque sotterranee Fonte: ENEA PROT-IDR)

Parametro influente Precipitazione media annua (mm)	Fattore correttivo	Parametro influente Permeabilità del suolo	Fattore correttivo
< 800	0,6	Alta	1,35
800 – 1200	1	Moderata	1
> 1200	1,5	bassa	0,8

Le aree caratterizzate da più alte concentrazioni di Azoto e Fosforo sono i distretti di Avezzano e L'Aquila e le aree prospicienti la costa. Alla foce dei fiumi e nei bacini dei fiumi interamente racchiusi nella fascia collinare si rilevano:

- concentrazioni di Azoto generalmente maggiori di 12.000 Kg/anno, mediamente comprese tra i 24.000 e i 48.000 Kg/anno, localmente anche maggiori di 100.000 Kg/anno;
- concentrazioni di Fosforo generalmente maggiori di 600 Kg/anno, mediamente comprese tra i 1.000 e i 4.800 Kg/anno, localmente anche maggiori di 4.800 Kg/anno.

Lungo i corsi d'acqua a maggiore sviluppo lineare la situazione risulta più eterogenea: in particolare, per il bacino Aterno-Pescara, l'alto corso (fatta eccezione per il comprensorio del Comune de L'Aquila) fa rilevare basse concentrazioni di Azoto e Fosforo, che crescono in corrispondenza della confluenza del F. Gizio col F. Sagittario e del F. Orta con il F. Pescara, per diventare decisamente alte allo sbocco dei fiumi in mare.

Negli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede monografiche dei Corpi Idrici Superficiali"**, per ciascun bacino idrografico dei corpi idrici significativi, d'interesse e potenzialmente influenti sui significativi, sono riportate le valutazioni sui carichi inquinanti potenziali ed effettivi di origine agricola.

4.2.7 Sintesi dei carichi di origine zootecnica ed agricola incidenti sui singoli bacini idrografici della Regione Abruzzo

In **Tabella 4.21** sono riportati i carichi organici potenziali ed effettivi di origine zootecnica per ogni bacino idrografico.

Nel dettaglio, i carichi organici potenziali ed effettivi di origine zootecnica, generati per ciascun comune e calcolati secondo le procedure descritte nei paragrafi precedenti, sono stati moltiplicati per un opportuno indice, rappresentativo della percentuale di territorio comunale

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

71

SERVIZIO QUALITA' DELLE ACQUE

compreso entro il perimetro del bacino considerato¹⁸, così da ottenere stime attendibili, riferite alla porzione di territorio effettivamente compresa nel bacino in oggetto.

A seguire vengono riportati i valori relativi ai carichi potenziali (**Tabella 4.22**) ed effettivi (**Tabella 4.23**) dei nutrienti, sia di origine zootecnica che, per confronto, di origine agricola.

I carichi sono stati calcolati con le procedure esposte nei paragrafi precedenti, ma sono stati opportunamente corretti, per considerare l'incidenza di ciascun comune sul bacino di appartenenza.

Tabella 4.21 - Carichi organici potenziali ed effettivi di origine zootecnica

Bacino	Carichi po	tenziali	Carich	i effettivi
Bacino	BOD ₅ (t/anno)	COD (t/anno)	BOD ₅ (t/anno)	COD (t/anno)
ALENTO	402,56	866,12	4,03	21,65
ARIELLI	161,66	347,92	1,62	8,70
ATERNO – PESCARA	9603,82	20661,93	96,04	516,55
FELTRINO	88,63	190,69	0,89	4,77
FORO	898,18	1933,30	8,98	48,33
LIRI - GARIGLIANO*	2008,09	4319,03	20,08	107,98
MORO	287,37	618,50	2,87	15,46
OSENTO	341,95	735,95	3,42	18,40
PIOMBA	2185,93	4705,88	21,86	117,65
SALINE	5761,64	12398,46	57,62	309,96
SANGRO*	4019,86	8646,85	40,20	216,17
SALINELLO	1058,94	2277,88	10,59	56,95
SINELLO	1014,50	2183,52	10,15	54,59
TEVERE*	1684,54	3622,91	16,85	90,57
TORDINO	2815,26	6056,68	28,15	151,42
TRIGNO*	1263,55	2719,44	12,64	67,99
TRONTO*	1042,59	2243,10	10,43	56,08
VIBRATA*	1055,87	2272,33	10,56	56,81
VOMANO	5839,24	12566,75	58,39	314,17

st Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

Le superfici comunali realmente comprese nei bacini idrografici sono state calcolate a seguito di una procedura di intersezione tra le features class bacini Idrografici e Limiti amministrativi comunali

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.22 - Carichi potenziali dei nutrienti di origine agricola e zootecnica

Bacino	Tipologia carichi	N – Azoto (t/anno)	P – Fosforo (t/anno)
	Agricoltura	508,09	149,79
ALENTO	Zootecnia	93,69	20,25
	Agricoltura	303,63	90,88
ARIELLI	Zootecnia	35,70	11,84
	Agricoltura	5434,91	1534,83
ATERNO – PESCARA	Zootecnia	2184,19	412,90
	Agricoltura	320,12	91,64
FELTRINO	Zootecnia	21,75	3,91
	Agricoltura	1110,99	333,19
FORO	Zootecnia	170,11	42,07
	Agricoltura	1586,43	541,69
LIRI - GARIGLIANO*	Zootecnia	459,21	74,09
Mono	Agricoltura	389,85	114,85
MORO	Zootecnia	58,18	13,43
	Agricoltura	1012,76	248,75
OSENTO	Zootecnia	68,88	16,91
PTOMPA	Agricoltura	700,73	191,84
PIOMBA	Zootecnia	385,69	104,99
CALTNE	Agricoltura	2838,77	850,00
SALINE	Zootecnia	1236,38	254,11
CANCRO	Agricoltura	3190,76	887,00
SANGRO*	Zootecnia	1051,11	185,67
CALTNELLO	Agricoltura	879,65	227,94
SALINELLO	Zootecnia	270,40	55,13
CINCLLO	Agricoltura	2027,08	500,69
SINELLO	Zootecnia	202,44	55,39
TEVEDE*	Agricoltura	527,00	168,38
TEVERE*	Zootecnia	465,77	83,74
TORDINO	Agricoltura	1856,55	529,53
TORDINO	Zootecnia	623,59	116,06
TDTCNO*	Agricoltura	1341,87	326,76
TRIGNO*	Zootecnia	254,91	74,31
TRONTO*	Agricoltura	308,93	87,43
TRONTO*	Zootecnia	190,40	37,42
VIDDATA*	Agricoltura	831,15	210,81
VIBRATA*	Zootecnia	229,72	53,23
VOMANO	Agricoltura	2090,43	603,68
VOMANO	Zootecnia	1133,66	255,62

^{*} Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 4.23 - Carichi effettivi dei nutrienti di origine agricola e zootecnica

Bacino	Tipologia carichi	N – Azoto (t/anno)	P – Fosforo (t/anno)
AL FAITO	Agricoltura	105,24	4,64
ALENTO	Zootecnia	16,85	0,63
ADTELLT	Agricoltura	48,24	2,16
ARIELLI	Zootecnia	4,91	0,29
ATERNO DESCARA	Agricoltura	1096,71	46,58
ATERNO – PESCARA	Zootecnia	375,87	12,50
FELTRINO	Agricoltura	58,12	2,50
FELIKINO	Zootecnia	3,72	0,12
FORO	Agricoltura	242,59	10,90
FORO	Zootecnia	33,25	1,42
LIRI - GARIGLIANO*	Agricoltura	225,75	11,43
LIRI - GARIGLIANO	Zootecnia	71,54	2,03
MORO	Agricoltura	80,73	3,56
MORO	Zootecnia	10,65	0,42
OSENTO	Agricoltura	166,70	6,16
OSENTO	Zootecnia	10,62	0,46
PIOMBA	Agricoltura	159,34	6,47
PIOMBA	Zootecnia	63,38	3,02
SALINE	Agricoltura	618,50	27,97
SALINE	Zootecnia	234,01	8,30
SANGRO*	Agricoltura	660,12	27,89
SANGRO	Zootecnia	202,91	6,31
SALINELLO	Agricoltura	200,39	7,82
SALINELLO	Zootecnia	51,33	1,80
SINELLO	Agricoltura	403,29	15,03
SINELEO	Zootecnia	38,97	1,90
TEVERE*	Agricoltura	94,12	4,58
ILVERE	Zootecnia	76,27	2,27
TORDINO	Agricoltura	432,11	18,59
TORDINO	Zootecnia	126,68	4,16
TRIGNO*	Agricoltura	302,34	10,99
1120110	Zootecnia	51,06	2,61
TRONTO*	Agricoltura	66,56	2,85
IKOKIO	Zootecnia	34,70	1,22
VIBRATA*	Agricoltura	137,69	5,25
VIDRAIA.	Zootecnia	32,93	1,38
VOMANO	Agricoltura	482,86	21,06
TOPIANO	Zootecnia	226,52	8,98

^{*} Stima dei carichi prodotti in corrispondenza delle porzioni di bacino ricadenti nel territorio regionale abruzzese

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

4.3 Metodologia di valutazione dello stato quantitativo delle acque superficiali e sotterranee

Nel presente paragrafo viene descritta la metodologia generale seguita nella valutazione dello stato quantitativo delle acque superficiali e sotterranee. Per la descrizione dei risultati delle elaborazioni condotte si rimanda agli allegati richiamati nell'ambito dei paragrafi specifici.

4.3.1 Considerazioni sullo stato quantitativo delle acque superficiali

Nell'ambito della redazione del PTA, ai fini della definizione preliminare delle pressioni sullo stato quantitativo delle acque superficiali, si è proceduto all'analisi e allo sviluppo dei seguenti argomenti:

- <u>Valutazione delle risorse idriche naturali superficiali e sotterranee</u> (Allegato Monografico A1.3 "Bilancio Idrologico e Idrogeologico");
- Valutazione del Deflusso Minimo Vitale, che rappresenta il deflusso che, in un corso d'acqua, deve essere presente a valle delle captazioni idriche al fine di mantenere vitali le condizioni di funzionalità e di qualità degli ecosistemi interessati (Allegato Monografico A1.6 "Valutazione del Deflusso Minimo Vitale").
- <u>Valutazione preliminare del bilancio idrico "alterato"</u> per le acque superficiali tenendo conto delle seguenti componenti fondamentali:
 - l'andamento delle disponibilità, dipendente dal regime idrologico;
 - la domanda idrica e le relative priorità di utilizzo.

La valutazione è stata effettuata attraverso l'utilizzo del catasto delle utenze oggi disponibile e del modello Mike Basin (Allegato Monografico A1.8 **"Bilancio Quantitativo"**).

Di seguito si riporta una breve descrizione delle metodologie seguite per la valutazione di:

- Bilancio Idrologico ed Idrogeologico;
- · Deflusso Minimo Vitale;
- Modello di bilancio quantitativo: Mike Basin.

4.3.1.1 Bilancio Idrologico ed Idrogeologico

Per la definizione del Bilancio Idrologico ed Idrogeologico della Regione Abruzzo è stato messo a punto un modello di trasformazione afflussi-deflussi basato sulle equazioni del bilancio idrologico e di quello idrogeologico accoppiate al fine di pervenire, in maniera integrata, alla valutazione delle risorse naturali superficiali e sotterranee. Per risorsa idrica naturale si intende il volume di acqua che, nel periodo di tempo considerato, attraversa una determinata sezione di un corso d'acqua superficiale, o di una falda sotterranea, in assenza di alterazioni prodotte da usi antropici.

Il bilancio naturale è stato valutato a scala regionale e su base annua, a partire dai dati meteoclimatici (precipitazione e temperatura).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Per quanto concerne il bilancio idrologico, esso riguarda la valutazione dell'entità delle risorse idriche superficiali calcolata per ciascun bacino idrografico. Tale valutazione è stata ottenuta sommando i volumi d'acqua di ruscellamento a quelli emergenti dai corpi idrici sotterranei. I risultati dello studio idrologico sono stati inoltre verificati, ove possibile, con le portate misurate agli idrometri del Servizio Idrografico. In particolare sono stati esaminati tutti gli idrometri ricadenti sul territorio regionale caratterizzati da serie storiche significative. A tale riguardo sono stati presi in considerazioni anche i dati relativi a periodi meno recenti, in quanto si è ritenuto che il deflusso misurato fosse rappresentativo di quello naturale.

Per i dettagli sulla descrizione del Bilancio Idrologico ed Idrogeologico si rimanda all'Allegato Monografico A1.3 **"Bilancio Idrologico ed Idrogeologico"**.

4.3.1.2 Deflusso Minimo Vitale

Il Deflusso Minimo Vitale (DMV) rappresenta il deflusso che, in un corso d'acqua, deve essere presente a valle delle captazioni idriche al fine di mantenere vitali le condizioni di funzionalità e di qualità degli ecosistemi interessati.

La conoscenza delle caratteristiche del deflusso superficiale e sotterraneo nelle condizioni teoriche ha consentito di definire la Componente Idrologica del Deflusso Minimo Vitale (Q*) per tutti i tratti della rete idrografica principale.

Il DMV, nell'ambito della redazione del PTA, è stato determinato attraverso il prodotto della suddetta componente idrologica, stimata in base alle peculiarità del regime idrologico, e di una componente biologico-ambientale, determinata sperimentalmente, che tiene conto delle caratteristiche morfologiche dell'alveo, della sua naturalità, dei pregi naturalistici, della funzionalità fluviale, degli obiettivi di qualità biologica e della composizione della fauna ittica.

Pertanto il calcolo del DMV in una determinata sezione del corso d'acqua è espresso dalla formula di seguito riportata:

DMV =
$$Q * \cdot K_{\text{bio}} \text{ (m}^3/\text{sec)}$$

dove, in breve:

- Q*, rappresenta la componente idrologica del DMV (espressa in m³/sec);
- K_{bio}, rappresenta l'insieme dei fattori correttivi che tengono in conto la componente biologico-ambientale (fattore dimensionale).

In particolare la determinazione dei suddetti fattori è stata effettuata come segue:

- Q*, calcolato direttamente a partire dai risultati dello studio del bilancio idrologico ed idrogeologico dell'Abruzzo effettuato nell'ambito della redazione del PTA, considerando i dati pluvio-meteo mensili (Allegato Monografico A1.3 "Bilancio Idrologico e Idrogeologico");
- K_{bio}, individuato a partire dai risultati ottenuti da studi specifici già eseguiti su 3 bacini –
 campione (Bacino del Sangro, Bacino del Fino/Tavo/Saline, Bacino del Vomano). In

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

attesa della determinazione dei parametri biologico-ambientali da attribuire ai restanti corsi d'acqua regionali, provvisoriamente, a scopo cautelativo si è utilizzato un valore di riferimento pari a 1.2, ritenuto il valore medio più significativo di K_{bio} , considerando le caratteristiche (idrologiche e idrogeologiche morfologiche, ecc..) dei bacini campione. In definitiva il valore finale del DMV da considerare nell'ambito del PTA nei bacini in cui non si hanno ancora a disposizione studi specifici può assumersi:

pari a:

$$DMV = Q * \cdot 1,2$$

e, pari a :

$$DMV = Q * \cdot 1,5$$

se il tratto di corso d'acqua interessato dalla derivazione ricade in un'area protetta o in sito di Rete Natura 2000.

Per i dettagli sulla descrizione ed applicazione del DMV si rimanda all'Allegato Monografico A1.6 "Valutazione del Deflusso Minimo Vitale".

4.3.1.3 Il modello di bilancio quantitativo: Mike Basin

Il modello preliminare di bilancio idrico superficiale è stato realizzato mediante il codice Mike Basin, sviluppato dalla Società "DHI Water & Environment", che associa i dati territoriali, riceve e sintetizza i dati idrologici ed idrogeologici.

Lo sviluppo di un modello di bilancio idrico nell'ambito della redazione del PTA ha avuto lo scopo di verificare la possibilità di poter disporre, su base regionale, di uno strumento di pianificazione e gestione delle risorse idriche e, contestualmente alla sua messa a punto, di valutare le carenze esistenti in termini di dati e di informazioni disponibili sul territorio, che possono inficiare la corretta implementazione dello stesso.

L'obiettivo finale, una volta tarato e validato il modello nelle zone individuate come "potenzialemente critiche", sarà quello di rendere disponibile, a livello regionale, uno strumento di supporto decisionale per la gestione dei deflussi, permettendo, in modo dinamico, di riorganizzazione e/o razionalizzazione gli usi della risorsa nell'ambito del territorio regionale, con specifica attenzione alla gestione complessiva e al bilancio idrico.

Il modello Mike Basin fornisce, infatti, una rappresentazione matematica del comportamento dei bacini idrografici, la quale riproduce la configurazione della rete idrografica principale e secondaria, l'idrologia nelle sue componenti spaziale e temporale, i maggiori schemi di utilizzo e le varie tipologie di idroesigenza.

La verifica dell'equilibrio del bilancio idrico su un bacino idrografico tiene conto degli elementi conoscitivi disponibili riquardo alle due componenti principali:

- l'andamento delle disponibilità, dipendente dal regime idrologico;
- la domanda idrica e le relative priorità di utilizzo.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

E' da sottolineare che entrambe le componenti presentano un'ampia variabilità spazio-temporale che può alterare l'analisi di bilancio della risorsa media disponibile o residua.

Il bilancio della risorsa idrica in Abruzzo, quindi, condotto a scala regionale, è stato redatto utilizzando tutti gli elementi conoscitivi derivanti dal modello di bilancio idrologico e dalla rete e dati delle infrastrutture esistenti, utilizzando la struttura integrata del sistema modellistica messo a punto, che ingloba in una visione unitaria il sistema naturale ed il sistema antropico dei prelievi (sistema attuale).

Il modello Mike Basin costituisce, di fatto, uno strumento di simulazione e di verifica degli scenari attuali e futuri relativi allo stato quantitativo della risorsa e agli effetti delle azioni mirate al conseguimento degli obiettivi del D.Lgs. 152/06.

Esso è strutturato come un modello a rete nel quale i fiumi e i loro tributari sono descritti mediante una maglia costituita di rami (*branches*) e nodi. I rami sono compresi tra sezioni fluviali definite, mentre i nodi sono situati nei punti di confluenza tra rami diversi, oppure in corrispondenza di siti di interesse notevole.

Il modello viene "alimentato" da serie storiche idrologiche di riferimento (anno medio e anno scarso) su base mensile; in particolare è "alimentato" dalle serie di portate generate dalle componenti del modello delle acque sotterranee (apporti positivi o negativi) e delle acque superficiali.

Sono stati analizzati gli schemi relativi agli acquedotti regionali ed i meccanismi di trasferimento d'acqua tra diversi bacini.

L'intero sistema modellistico del PTA risulta, pertanto, integrato fondamentalmente nel modello Mike Basin; esso "fotografa", ad ogni passo di tempo, la disponibilità reale delle portate in alveo nei punti di interesse in relazione alle disponibilità naturali e agli utilizzi di risorsa idrica individuati.

Nella scelta delle utenze da inserire nella modellazione di bilancio, sono state scartate quelle aventi portata inferiore a 100 l/s. Le portate richieste per le utenze sono state dedotte dai dati disponibili, ovvero le concessioni massime di catasto. La conoscenza dell'andamento mensile della portata media di prelievo di ogni utenza, invece delle concessioni massime, unitamente ai reali valori riferiti alle grandi derivazioni idroelettriche, in sostituzione della portata media derivata pari all'equivalente di 6 ore giornaliere della portata massima, inseriti nella modellazione Mike Basin, consentirebbe la definizione di coefficienti assoluti di criticità.

Il processo di schematizzazione delle utenze ha implicato che, in alcuni casi, più utenze sono state sinteticamente modellate in un'unica utenza, con il prelievo eseguito dal nodo più vicino all'ubicazione della stessa. Tale approssimazione è considerata accettabile per la redazione del Piano di Tutela di carattere Regionale e per l'identificazione delle criticità idriche nei corpi idrici e nei bacini significativi.

I risultati dell'applicazione del modello sono stati sintetizzati su apposite schede riepilogative che riportano gli andamenti annuali delle seguenti grandezze caratteristiche:

- portata naturale (Qn);
- componente idrologica del Deflusso minimo vitale (Q*);

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- portata attuale (Qa);
- deflusso idrico/disponibilità idrica (Di = Qa Q*);
- utenze.

Dall'analisi di tali grandezze si possono avere delle indicazioni sulle criticità potenziali presenti a livello di ciascun bacino.

Per il dettaglio dei risultati delle simulazioni effettuate, si rimanda all'Allegato Monografico A1.6 **"Valutazione del Deflusso Minimo Vitale"**.

4.3.1.4 Valutazione dello stato quantitativo delle acque superficiali

La valutazione dello stato quantitativo delle acque superficiali è stata effettuata attraverso il confronto dei valori di Deflusso Minimo Vitale determinati, sulla base della metodologia descritta in precedenza, nei nodi in cui è stata schematizzata la rete idrografica regionale con le portate misurate agli idrometri (Q_{mis}).

E' stata, inoltre, effettuata una valutazione delle portate calcolate tramite modello di bilancio idrico superficiale Mike Basin (Q_a) nei nodi dei rami in cui è stata schematizzata la rete idrografica regionale.

L'elaborazione dei risultati ottenuti dal confronto di tali dati ha consentito di evidenziare le situazioni fluviali compromesse derivanti da deficit idrico *reale* (portate misurate agli idrometri) e *potenziale* (portate calcolate tramite Mike Basin) sulla base della domanda e della disponibilità idrica. D'altra parte però, a causa dell'approssimazione della schematizzazione delle utenze, dell'aggiornamento di dati relativi ad esse e della stima dei consumi e dell'approssimazione della schematizzazione e l'aggiornametno dei dati delle utenze in essere nel Mike Basin, i risultati quantitativi devono essere considerati solo in termini relativi e funzionali alla definizione di interventi prioritari per i necessari approfondimenti futuri.

E' da ricordare, infatti, che i valori di criticità riscontrati nell'applicazione del Mike Basin si basano sulle portate calcolate (Q_a) derivanti dall'utilizzazione di un modello applicato su scala regionale, suscettibile di miglioramento in termini di accuratezza e aggiornamento (sulla base di dati di maggior dettaglio che si renderanno disponibili nel corso del tempo). Pertanto le aree individuate sono da considerare come zone di "potenziale criticità" nell'ambito delle quali intervenire prioritariamente con misure orientate preliminarmente all'approfondimento dello stato conoscitivo quantitativo (implementazione rete misure, maggiore definizione del catasto delle utenze e dei consumi).

Lo studio, infatti, è stato condotto tenendo in considerazione tutte le informazioni disponibili nel momento in cui è stato implementato il modello¹⁹: nel caso in cui informazioni più dettagliate si

¹⁹ I dati relativi al catasto delle utenze caricati e schematizzati nel Mike Basin sono riferiti all'anno 2004.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

rendessero disponibili, sarà possibile raffinare ulteriormente la schematizzazione e le portate medie delle utenze in modo da ottenere indici che si avvicinino ai valori assoluti di criticità.

In linea di massima gli scostamenti riscontrati attualmente fra valori di portata calcolati dal modello è quelli reali potrebbero essere dovuti a:

- idrometri con pochi anni a disposizione, per i quali la portata media ricavata dalle portate misurate potrebbe non rappresentare l'effettivo anno medio statistico, che è lo scenario analizzato dal modello di bilancio,
- difformità dello schema reale delle utenze rispetto a quello di catasto, che è alla base della modellazione.
- captazioni effettive delle utenze sostanzialmente differenti dai valori di concessione secondo i diversi usi (irrigue, idroelettriche ecc),
- le ore di funzionamento di alcune centrali idroelettriche non seguono le ipotesi adottate secondo l'informazione disponibile in fase di redazione del PTA.

Tali argomenti sono, quindi, da intendersi come azioni di miglioramento al fine di poter raggiungere un maggior grado di affidabilità dei risultati derivanti dall'applicazione del modello.

Per approfondimenti relativi alla valutazione dello stato quantitativo delle acque superficiali e sotterranee è possibile far riferimento all'Allegato Monografico A1.6 **"Valutazione del Deflusso Minimo Vitale".**

4.3.2 Considerazioni sullo stato quantitativo delle acque sotterranee

Ai fini della definizione preliminare delle *pressioni sullo stato quantitativo delle acque sotterranee*, l'insufficienza dei dati sperimentali e di informazioni di base dettagliate riguardanti la quantificazione dei volumi prelevati dalla falda e restituiti in falda non ha permesso di effettuare stime sull'impatto antropico esercitato sulla quantità delle acque sotterranee.

Pertanto, è stata messa a punto una metodologia di approccio a tale problematica che è basata sui risultati ottenuti dalla valutazione delle risorse idriche naturali sotterranee realizzata mediante il calcolo del bilancio idrogeologico (Allegato Monografico A1.3 "Bilancio Idrologico e idrogeologico"). Il tutto, unito alla conoscenza degli schemi di circolazione idrica sotterranea, ha permesso di effettuare tutta una serie di considerazioni di carattere generale, utili per una preliminare valutazione degli impatti.

In particolare, di seguito vengono riportate osservazioni differenti a seconda della tipologia dell'acquifero esaminato.

Per quanto concerne gli acquiferi carbonatici, la falda idrica sotterranea di base è profonda e, per lo più, captata con opere a gravità che non possono dare origine ad alcun tipo di sovrasfruttamento. Inoltre, anche laddove esistono pozzi, essendo gli stessi acquiferi dotati di una struttura "a catino", che ne permette l'utilizzazione come "serbatoi naturali di compenso", è possibile un uso dinamico della risorsa, con compensi stagionali e/o pluriennali.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

A ciò bisogna aggiungere che le falde degli acquiferi carbonatici alimentano spesso, con copiosi apporti laterali, i corpi idrici sotterranei che si generano nei grandi acquiferi fluvio-lacustri intramontani. Pertanto, anche per questi ultimi acquiferi non risulta possibile il sovrasfruttamento della falda, a causa sia della anzidetta sovralimentazione, sia perché la presenza di pozzi in emungimento è relativamente limitata, in quanto esistono consorzi per la distribuzione di acque a scopo irriguo e industriale.

Invece per i corpi idrici sotterranei che si generano negli acquiferi alluvionali costieri, e quindi in aree altamente antropizzate, è possibile osservare, lungo costa, segnali di sovrasfruttamento della falda, evidenziati da fenomeni di ingressione marina.

Tutto quanto sopra esposto dovrà essere approfondito mediante indagini a scala di maggior dettaglio, focalizzate soprattutto alla soluzione delle problematiche inerenti agli acquiferi di pianura (costieri e intramontani).

A tal scopo sono appunto da prevedere integrazioni sia della rete di monitoraggio delle acque sotterranee, sia delle conoscenze di base che potranno consistere, ad esempio, in censimenti dei punti d'acqua, con raccolta dei dati relativi alle portate emunte, ai periodi di emungimento, ai volumi d'acqua prelevati e/o restituiti in falda, ecc. Inoltre risulta di fondamentale importanza anche un adeguato aggiornamento degli schemi di circolazione idrica sotterranea, da realizzare mediante ricostruzioni piezometriche di dettaglio in diversi periodi dell'anno, verificando anche i rapporti falda-fiume.

Per approfondimenti relativi alla valutazione dello stato quantitativo delle acque sotterranee è possibile far riferimento all'Allegato Monografico A1.4 "Classificazione dello Stato di qualità ambientale dei corpi idrici sotterranei significativi".

A, ENEL.HYDRO D'APPOLONIA

PROGER S.P.A.

PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

5. MONITORAGGIO E CLASSIFICAZIONE DEI CORPI IDRICI SUPERFICIALI E SOTTERRANEI

Il presente capitolo descrive le attività di monitoraggio che hanno riguardato i corpi idrici superficiali e sotterranei presenti nel territorio della Regione Abruzzo.

Nello specifico, il monitoraggio è stato effettuato mediante l'attivazione di una rete distribuita su:

- 1. corpi idrici superficiali:
 - corsi d'acqua;
 - laghi artificiali e naturali significativi;
 - canali artificiali significativi e di interesse;
 - acque marino costiere.
- 2. corpi idrici sotterranei significativi e di interesse.

Per quanto concerne la classificazione dello stato di qualità ambientale dei corpi idrici, essa è stata effettuata per:

- i. i corpi idrici superficiali:
 - i corsi d'acqua;
 - i laghi artificiali e naturali significativi;
 - i canali artificiali significativi e di interesse;
 - le acque marino-costiere;
- 2. i corpi idrici sotterranei significativi.

<u>Dal 1º gennaio 2010 è attivo un programma di monitoraggio su tutti i corpi idrici superficiali e sotterranei conforme ai criteri indicati nella Direttiva 2000/60/CE e recepiti con le recenti modifiche apportate al D.Lqs 152/06²⁰</u>

Nei paragrafi che seguono vengono riportati anche i risultati del monitoraggio dei corpi idrici ottenuti attraverso l'applicazione dei criteri indicati nell'Allegato 1 al D.Lgs. 152/99, oggi abrogato dal D.Lgs 152/06. Tali criteri sono stati applicati per il monitoraggio dei corsi d'acqua

QUADRO_CONOSCITIVO 81

-

²⁰ DM Ambiente 16 giugno 2008 n. 131 " Criteri tecnici per la caratterizzazione dei corpi idrici- attuazione art. 75 D.Lg s 152/2006";

D.Lgs 16 marzo 2009, n.30 "Attuazione della Direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento"

DM 14 aprile 2009, n. 56 "Regolamento recante <<Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n 152 recante norme in materia ambientale, predisposto ai sensi dell' articolo 75, comma 3, del decreto legislativo medesimo>>"

DM 8 novembre 2010, n. 260 "Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del D.Lgs 3 aprile 2006, n. 152, recante norme in materia ambienatle, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo".

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

oggetto del piano, dei laghi significativi, artificiali e naturali, dei canali artificiali significativi e delle acque marino costiere dal 2000 al 2009.

La rete di monitoraggio attiva dal 2010 sui corpi idrici superficiali e sotterranei , i parametri ed i criteri di classificazione, previsti dalla Direttiva 2000/60, ad essa applicata sono descritti nei sequenti elaborati:

- A1.9: "Individuazione dei corpi idrici superficiali e analisi delle pressioni ai sensi del DM 131/08"
- **A1.10:** "Individuazione dei corpi idrici sotterranei analisi delle pressioni e del livello di rischio ai sensi del D.Lgs 30/2009".

e alle carte di piano allegati agli stessi elaborati.

5.1 Monitoraggio e classificazione dei corpi idrici superficiali

Di seguito vengono descritte le attività di monitoraggio svolte dal 2000 al 2009 e vengono riportate la classificazione dei corpi idrici superficiali e la normativa di riferimento. Per il dettaglio sulle attività di monitoraggio attivate dal gennaio 2010 si rimanda agli elaborati A1.9: "Individuazione dei corpi idrici superficiali e analisi delle pressioni ai sensi del DM 131/08" e A1.10: "Individuazione dei corpi idrici sotterranei analisi delle pressioni e del livello di rischio ai sensi del D.Lgs 30/2009", e alle carte di piano allegati agli stessi elaborati.

5.1.1 Definizione dello stato di qualità ambientale dei corpi idrici superficiali

D.Lgs. 152/99 - Allegato 1

2. Obiettivi di qualità ambientale

2.1 Corpi idrici superficiali

Lo stato di qualità ambientale dei corpi idrici superficiali viene definito sulla base dello stato ecologico e dello stato chimico del corpo idrico.

2.1.1 Stato ecologico

Lo stato ecologico dei corpi idrici superficiali è l'espressione della complessità degli ecosistemi acquatici, e della natura fisica e chimica delle acque e dei sedimenti, delle caratteristiche del flusso idrico e della struttura fisica del corpo idrico, considerando comunque prioritario lo stato degli elementi biotici dell'ecosistema.

Gli elementi chimici che saranno considerati per la definizione dello stato ecologico saranno, a seconda del corpo idrico, i parametri chimici e fisici di base relativi al bilancio dell'ossigeno ed allo stato trofico.

Al fine di una valutazione completa dello stato ecologico dovranno essere utilizzati opportuni indicatori biologici; oltre all'utilizzo dell'indice biotico esteso (I.B.E.) per i corsi d'acqua superficiali, sarà necessario utilizzare i metodi per la rilevazione e la valutazione della qualità degli elementi biologici e di quelli morfologici dei corpi idrici che dovranno essere definiti con apposito decreto ministeriale su proposta dell'ANPA in particolare per le acque marine costiere, le acque di transizione ed i laghi.

2.1.2 Stato Chimico

Lo stato chimico è definito in base alla presenza di sostanze chimiche pericolose. Ai fini della prima classificazione, la valutazione dello stato chimico dei corpi idrici superficiali è effettuata in base ai valori soglia riportate nella direttiva 76/464 CEE e nelle direttive da essa derivate, nelle parti riguardanti gli obiettivi di qualità nonché nell'allegato 2 sezione B; nel caso che per gli stessi parametri siano riportati valori diversi, deve essere considerato il più restrittivo.

Alla successiva tabella 1 sono riportati i principali inquinanti chimici già normati dalle direttive comunitarie. Per la definizione dello stato chimico la definizione dei parametri da ricercare è effettuata dalla autorità competente; in

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

relazione alle criticità presenti sul territorio.

Tabella 1 – Principali inquinanti chimici da controllare nelle acque dolci superficiali

INORGANICI (disciolti) ¹	ORGANICI (sul tal quale)
Cadmio	Aldrin
Cromo totale	Dieldrin
Mercurio	Endrin
Nichel	Isodrin
Piombo	DDt
Rame	Esaclorobenzene
Zinco	Esaclorocidoesano
	Esaclorobutadiene
	1,2 dicloroetano
	Tricloroetilene
	Triclorobenzene
	Cloroformio
	Tetracloruro di carbonio
	Pentacloroetilene
	Pentaclorofenolo

¹ se è accertata l'origine naturale di sostanze inorganiche, la loro presenza non compromette l'attribuzione di una classe di qualità definita dagli altri parametri

2.1.3. Stato ambientale

Lo stato ambientale è definito in relazione al grado di scostamento rispetto alle condizioni di un corpo idrico di riferimento.

Gli stati di qualità ambientale previsti per le acque superficiali sono riportati alla tabella 2.

Tabella 2 – Definizione dello stato ambientale per i corpi idrici superficiali

ELEVATO	Non si rilevano alterazioni dei valori di qualità degli elementi chimico-fisici ed idromorfologici per quel dato tipo di corpo idrico in dipendenza degli impatti antropici, o sono minime rispetto ai valori normalmente associati allo stesso ecotipo in condizioni indisturbate. La qualità biologica sarà caratterizzata da una composizione e un'abbondanza di specie corrispondente totalmente o quasi alle condizioni normalmente associate allo stesso ecotipo. La presenza di microinquinanti, di sintesi e non di sintesi, è paragonabile alle concentrazioni di fondo rilevabili dei corpi idrici non influenzati da alcuna pressione antropica.
BUONO	I valori degli elementi della qualità biologica per quel tipo di corpo idrico mostrano bassi livelli di alterazione derivanti dall'attività umana e si discostano solo leggermente da quelli normalmente associati allo stesso ecotipo in condizioni non disturbate. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da non comportare effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.
SUFFICIENTE	I valori degli elementi della qualità biologica per quel tipo di corpo idrico si discostano moderatamente da quelli di norma associati allo stesso ecotipo in condizioni non disturbate. I valori mostrano segni di alterazione derivanti dall'attività umana e sono sensibilmente più disturbati che nella condizione di "buono stato". La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da non comportare effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.
SCADENTE	Si rilevano alterazioni considerevoli dei valori degli elementi di qualità biologica del tipo di corpo idrico superficiale, e le comunità biologiche interessate si discostano sostanzialmente da quelle di norma associate al tipo di corpo idrico superficiale inalterato. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da comportare effetti a medio e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento
PESSIMO	I valori degli elementi di qualità biologica del tipo di corpo idrico superficiale presentano alterazioni gravi e mancano ampie porzioni delle comunità biologiche di norma associate al tipo di corpo idrico superficiale inalterato. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da gravi effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Ai sensi del D.Lgs. 152/99, lo stato di qualità ambientale dei corpi idrici superficiali è definito sulla base dello stato ecologico e dello stato chimico.

5.1.2 Monitoraggio dei corpi idrici superficiali

D.Lgs. 152/99 - Allegato 1

3. Monitoraggio e classificazione: acque superficiali

3.1 Organizzazione del monitoraggio

Il monitoraggio si articola in una fase conoscitiva iniziale che ha come scopo la prima classificazione dello stato di qualità ambientale dei corpi idrici ed in una fase a regime in cui viene effettuato un monitoraggio volto a verificare il raggiungimento ovvero il mantenimento dell'obiettivo di qualità "buono" ...

3.1.1 Fase conoscitiva

La fase conoscitiva iniziale ha la durata di 24 mesi ed ha come finalità la classificazione dello stato di qualità di ciascun corpo idrico; in base ad esso le autorità competenti definiscono, nell'ambito del piano di tutela, le misure necessarie per il raggiungimento o il mantenimento dell'obiettivo di qualità ambientale.

La fase conoscitiva iniziale, ha altresì lo scopo di raccogliere tutte le informazioni necessarie alla valutazione di ulteriori strumenti di valutazione utili alla valutazione degli elementi biologici e idromorfologici utili a definire più compiutamente lo stato ecologico dei corpi idrici superficiali, nonché per valutare le informazioni relative alla contaminazione da microinquinanti dei sedimenti e del biota, in particolare per quanto riguarda le acque costiere e le acque di transizione ed i laghi.

3.1.2 Fase a regime

Se i corpi idrici hanno raggiunto l'obiettivo "Buono" o "Elevato", il monitoraggio può essere ridotto ai soli parametri riportati in tabella 4, per i corsi d'acqua, in tabella 10, per i laghi, ed in tabella 13, per le acque marino costiere e per le acque di transizione. L'autorità competente, in relazione allo stato delle acque superficiali, può variare la frequenza dei campionamenti e il numero delle stazioni della rete di rilevamento.

Il monitoraggio delle acque superficiali è stato realizzato in due momenti distinti; una fase iniziale della durata di 24 mesi, volta alla prima classificazione delle acque, e un fase successiva, "a regime", volta a verificare il raggiungimento e/o il mantenimento dell'obiettivo di qualità "buono" (Cfr. riquadro legislativo).

5.1.3 Monitoraggio e classificazione dei corsi d'acqua superficiali

Il monitoraggio e la classificazione dei corsi d'acqua superficiali sono stati realizzati ai sensi del D.Lgs. 152/99, così come indicato in precedenza.

Le attività di monitoraggio sono state suddivise in:

- una *fase conoscitiva* della durata di 24 mesi (2000-2002);
- una fase "a regime" (iniziata nel 2003 e conclusa nel dicembre 2009).

Il monitoraggio svolto nella *fase conoscitiva* ha permesso una prima classificazione dello stato di qualità ambientale dei corsi d'acqua superficiali.

Per questa fase le attività di monitoraggio e di classificiazione delle acque sono state condotte dall'ATI (Associazione Temporanea di Imprese) Ecogest Sas di Teramo e Bioprogramm - Società Cooperativa di Padova, alla quale sono state affidate con Delibera di Giunta Regionale n. 1480 del 15/06/98.

Tale lavoro di indagine e classificazione delle acque superficiali (in attuazione del D.Lgs. 152/99, come modificato ed integrato dal D.Lgs. 258/2000) è stato svolto nell'ambito dell'attuazione del Piano Triennale per la Tutela dell'Ambiente (P.T.T.A 1994-1996) - Scheda 44 del Ministero dell'Ambiente.

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Per ciò che concerne la *fase "a regime"*, le attività di monitoraggio sono state affidate all'ARTA con la Convenzione del 20/03/2003 tra la Regione Abruzzo e la stessa Agenzia.

Nei seguenti paragrafi sono descritte le modalità di esecuzione del monitoraggio e di classificazione delle acque e sono riportati i risultati ottenuti dall'analisi dei dati raccolti nella fase conoscitiva e nella fase a regime fino a dicembre 2009.

5.1.3.1 Indicatori di qualità

D.Lgs. 152/99 - Allegato 1

3.2 Corsi d'acqua

3.2.1 Indicatori di qualità e analisi da effettuare

Ai fini della prima classificazione della qualità dei corsi d'acqua vanno eseguite determinazioni sulla matrice acquosa e sul biota; qualora ne ricorra la necessità, così come indicato successivamente nei punti relativi agli specifici corpi idrici, tali determinazioni possono essere integrate da indagini sui sedimenti e da test di tossicità.

3.2.1.1 Acque

Le determinazioni sulla matrice acquosa riguardano due gruppi di parametri, quelli di base e quelli addizionali.

I parametri di base, riportati in tabella 4, riflettono le pressioni antropiche tramite la misura del carico organico, del bilancio dell'ossigeno, dell'acidità, del grado di salinità e del carico microbiologico nonché le caratteristiche idrologiche del trasporto solido. I parametri definiti macrodescrittori e indicati con (o) nella tabella 4 vengono utilizzati nella classificazione; gli altri parametri servono a fornire informazioni di supporto per la interpretazione delle caratteristiche di qualità e di vulnerabilità del sistema nonché per la valutazione dei carichi trasportati. La determinazione dei parametri di base è obbligatoria.

I *parametri addizionali* sono relativi ai microinquinanti organici ed inorganici; quelli di più ampio significato ambientale sono riportati nella tabella 1 *(Cfr. par. 5.1.1)*. La selezione dei parametri da esaminare è effettuata dall'autorità competente caso per caso, in relazione alle criticità conseguenti agli usi del territorio. Le analisi dei parametri addizionali vanno effettuate ove l'Autorità competente lo ritenga necessario e comunque nel caso in cui:

- a seguito delle attività delle indagini conoscitive di cui all'allegato 3 si individuino sorgenti puntuali e diffuse o si abbiano informazioni pregresse e attuali su sorgenti puntuali e diffuse che apportino una o più specie di tali inquinanti nel corpo idrico;
- dati recenti dimostrino livelli di contaminazione, da parte di tali sostanze, delle acque e del biota o segni di incremento delle stesse nei sedimenti.

Tabella 4 - Parametri di base; con (o) sono indicati i parametri macrodescrittori utilizzati per la classificazione

Portata (m³/s)	Ossigeno disciolto (mg/L)**(o)
pH	BOD5 (O ₂ mg/L)**(o)
Solidi sospesi (mg/L)	COD (O ₂ mg/L)**(o)
Temperatura (°C)	Ortofosfato (P mg/L)*
Conducibilità (mS/cm (20°C))**	Fosforo Totale (P mg/L)**(o)
Durezza (mg/L di CaCO ₃)	Cloruri (Cl - mg/L)*
Azoto totale (N mg/L)**	Solfati (SO ₄ mg/L)*
Azoto ammoniacale (N mg/L)*(o)	Escherichia coli (UFC/100 mL)(o)
Azoto nitrico (N mg/L)*(o)	

^(*) determinazione sulla fase disciolta (**) determinazione sul campione tal quale

3.2.1.2 Biota

Le determinazioni sul biota riguardano due gruppi di analisi:

- Analisi di base: gli impatti antropici sulle comunità animali dei corsi d'acqua vengono valutati attraverso l'Indice Biotico Esteso (I.B.E.). Tale analisi va eseguita obbligatoriamente con le cadenze indicate al punto 3.2.2.2..
- Analisi supplementari: non obbligatorie, da eseguire a giudizio dell'autorità che effettua il monitoraggio, per una analisi più approfondita delle cause di degrado del corpo idrico. A tal fine possono essere effettuati saggi biologici finalizzati alla evidenziazione di effetti a breve o lungo termine. Tra questi in via prioritaria si segnalano:
- test di tossicità su campioni acquosi concentrati su Daphnia magna ;
- test di mutagenicità e teratogenesi su campioni acquosi concentrati;
- test di crescita algale;
- test su campioni acquosi concentrati con batteri bioluminescenti;

In aggiunta si segnala l'opportunità di effettuare determinazioni di accumulo di contaminanti prioritari (PCB, DDT e Cd) su tessuti muscolari di specie ittiche residenti o su organismi macrobentonici.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Per la definizione dello stato di qualità dei corsi d'acqua per ciascuna delle stazioni di monitoraggio, si è provveduto alla:

- 1. determinazione della *qualità chimico-fisica e microbiologica* della matrice acquosa sulla base dei:
 - parametri macrodescrittori di base come indicato in Tabella 4 dell'Allegato 1 al D.Lgs. 152/99;
 - parametri addizionali quali microinquinanti organici ed inorganici come indicato in Tabella 1 dell'Allegato 1 al D.Lgs. 152/99 (Cfr. par. 5.1.1).
- 2. determinazione della *qualità biologica* sulla base della valutazione dell'Indice Biotico Esteso (I.B.E.), secondo quanto indicato al punto 3.2.1.2 dell'Allegato 1 al D.Lgs. 152/99.

5.1.3.2 Stazioni di prelievo

D.Lgs. 152/99 - Allegato 1

3.2.2 Campionamento

3.2.2.1 Criteri per la scelta delle stazioni di prelievo

Per ogni corso d'acqua naturale viene definito un numero minimo di stazioni di prelievo, come indicato nella seguente tabella 6, in funzione della tipologia del corso d'acqua e della superficie del bacino imbrifero.

Le Autorità competenti possono aumentare il numero delle stazioni in presenza di particolari valori naturalistici e/o paesaggistici o per particolari utilizzazioni in atto o in tutte le situazioni in cui questo sia ritenuto necessario.

Tabella 6 - Numero stazioni nei corsi d'acqua naturali

	Numero stazioni							
Area del bacino (km²)	Corsi d'acqua di 1º ordine	Corsi d'acqua di 2° ordine o superiore						
200-400	1	·						
401-1000	2	1						
1001-5000	3	2						
5001-10.000	5	4						
10.001-25.000	6	-						
25.001-50.000	8	-						
>50.001	10	-						

Le stazioni di prelievo sui corsi d'acqua sono in linea di massima distribuite lungo l'intera asta del corso d'acqua, tenendo conto della presenza degli insediamenti urbani, degli impianti produttivi e degli apporti provenienti dagli affluenti.

I punti di campionamento sono fissati a una distanza dalle immissioni sufficiente ad avere la garanzia del rimescolamento delle acque al fine di valutare la qualità del corpo recettore e non quella degli apporti.

In ogni caso deve essere posta una stazione di prelievo nella sezione di chiusura di ogni corpo idrico significativo. La misura di portata può essere effettuata in modo puntuale in corrispondenza del punto di campionamento e contestualmente allo stesso o desunta dai valori di portata rilevati in continuo presso stazioni fisse.

In accordo con quanto riportato nel D.Lgs. 152/99, il numero minimo di stazioni di prelievo e l'ubicazione dei punti di monitoraggio sono stati definiti in funzione della tipologia del corso d'acqua - superficie del bacino imbrifero e della presenza di insediamenti urbani, impianti produttivi e degli apporti provenienti dagli affluenti.

Il numero di stazioni di campionamento (**Tabella 5.1**) risulta variabile per il periodo 2000-2006 in virtù dell'ampliamento della rete di monitoraggio realizzata nel corso degli anni secondo quanto di seguito riportato:

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1. Fase conoscitiva: 2000 - 2002

Secondo quanto previsto dalla normativa, sono state individuate 85 stazioni di monitoraggio.

2. Fase "a regime":

- I anno di monitoraggio: maggio 2003 aprile 2004
 E' stato mantenuto il numero di stazioni individuate nella fase conoscitiva;
- II anno di monitoraggio "a regime": maggio 2004 aprile 2005

 Al fine di assicurare la copertura omogenea della rete fluviale ed un monitoraggio più puntuale sulle aree che hanno evidenziato criticità negli anni precedenti, la rete di monitoraggio dei corsi d'acqua è stata incrementata di 13 stazioni rispetto all'anno precedente, con un totale di 98 stazioni.
- III anno di monitoraggio "a regime": gennaio 2006 dicembre 2006 La rete di monitoraggio è stata incrementata di 24 stazioni rispetto all'anno precedente, per un totale di 122 stazioni (Tabella 5.1) alle quali va sottratta la stazione R1307AT3 non monitorata nel 2006 e pertanto non più attiva da tale anno. L'ulteriore ampliamento della rete di monitoraggio, finalizzata all'acquisizione di informazioni di maggior dettaglio in determinate aree, assicura altresì una corrispondenza tra le stazioni idrometriche attive ed i punti di monitoraggio della qualità delle acque.
- IV, V e VI anno di monitoraggio "a regime": gennaio 2007 dicembre 2007, gennaio 2008 dicembre 2008; gennaio 2009-dicembre 2009
 La rete di monitoraggio è stata incrementata di 4 stazioni rispetto all'anno precedente, per un totale di 125 stazioni.

Tabella 5.1 - Rete attiva delle stazioni di monitoraggio dei corsi d'acqua superficiali

Bacino	Corso d'acqua	Codice stazione	Località	Comune	Stazioni fase conoscitiva e fase a regime
Tuombo	T. Castellano	I028CA3	Villafranca	Valle Castellana	*
Tronto	F. Tronto	I038TR1A	Ponte A14	Colonnella	*
		R1301VB1	S. Angelo	Civitella del Tronto	*
Vibrata	F. Vibrata	R1301VB2	Villa Bizzarri - A valle di S. Egidio	S.Omero	**
Vibrata	r. Vibrata	R1301VB2bis	Bivio Corropoli	Corropoli	*
		R1301VB2ter	Alba Adriatica	Alba Adriatica	***
	F. Salinello	R1302SL1	Ponte Piano Maggiore	Valle Castellana	*
Salinello		R1302SL3	Colle Purgatorio	Civitella del Tronto	*
Salinello		R1302SL5	Poggio Morello	Tortoreto	*
		R1302SL6	Bivio Cavatassi	Sant'Omero	***
	F. Tordino	R1303TD1	Ponte Macchiatornella	Cortino	*
	r. Torumo	R1303TD4	Villa Tordinia (Ramiera)	Teramo	*
Tordino	F. Vezzola	R1303VZ13	Scapriano	Teramo	*
TOTAINO		R1303TD6	Teramo inceneritore	Teramo	*
	F. Tordino	R1303TD8	Cordesco	Notaresco	***
		R1303TD9	Colleranesco (Saig)	Giulianova	*
Vomano	F. Vomano	R1304VM1	Paladini	Crognaleto	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Corso d'acqua	Codice stazione	Località	Comune	Stazioni fase conoscitiva e fase a regime
		R1304VM3	Ponte Poggio Umbricchio	Fano Adriano	*
		R1304VM5	Villa Cassetti, a monte confluenza con torrente Mavone	Montorio a Vomano	**
	T. Mavone	R1304MA15	S. Giovanni	Colledara	*
	T. Leomogna	R1304LE16	Castelli	Castelli	*
	T. Mavone	R1304MA18	Confluenza Vomano	Basciano	*
	F. Vomano	R1304VM6	Castelnuovo	Cellino Attanasio	*
	1. Volliano	R1304VM7	Roseto degli Abruzzi	Roseto degli Abruzzi	*
Cerrano	T. Cerrano	R1315CR1	Silvi Marina	Silvi Marina	*
		R1305PM1	Val Viano	Cellino Attanasio	*
Piomba	T. Piomba	R1305PM1bis	Villa Bozza	Montefino	**
Tiomba	1.11011104	R1305PM3	Madonna della Pace	Città S. Angelo	*
		R1305PM4	A monte ponte A14	Città S.Angelo	***
		R1306TA11	Farindola, Fraz. S. Quirico, stradina di campagna, sponda dx	Farindola	*
		R1306TA12	Tavo, a foce Lago	Penne	***
	F. Tavo	R1306TA13	Penne, 50 m a monte del Ponte S. Antonio (sponda sx)	Penne	*
		R1306TA14	Località Tavolaro	Moscufo	****
		R1306TA17	Cappelle sul Tavo, Loc. Congiunti, 50 m a valle del ponte	Cappelle sul Tavo	*
Saline		R1306FI4	Bisenti, 50 m a monte ponte vicino al campo sportivo, sponda dx	Bisenti	*
	F. Fino	R1306FI7	Elice	Elice	***
		R1306FI8	Località Congiunti, 100 m a monte del ponte, sponda dx	Collecorvino	*
		R1306SA1	Cappelle sul Tvao, a valle dello scarico del depuratore comunale	Città S. Angelo	***
	F. Saline	R1306SA2A	Montesilvano, in prossimità del depuratore consortile	Montesilvano	***
		R1306SA2	Montesilvano, ponte della Scafa, a valle scarico depuratore Consortile	Montesilvano	*
	F. Aterno	R1307AT3 (°°)	Marana centro abitato	Montereale	*
		R1307AT3bis	Località tre ponti	Cagnano Amiterno	***
	T. Raio	R1307RA29	Sassa Scalo (ponte sul fiume dopo p. livello)	L'Aquila	*
	F. Aterno	R1307AT8bis	A valle depuratore di Pile	L'Aquila	***
		R1307AT8	Incrocio SS 17 con SS 17 bis (ponte ferrovia) L'Aquila	L'Aquila	*
Aterno-	F. Vera	R1307VE34	Paganica (loc. Aquilentro dopo confluenza Raiale)	L'Aquila	*
Pescara		R1307AT9	A monte di Villa S.Angelo, 10m a monte del ponte sul F.Aterno	Villa Sant'Angelo	**
	F. Aterno	R1307AT12	A valle di Fontecchio, loc. Camponi	Fontecchio	*
		R1307AT15	Circa 500 m a valle della stazione di Molina	Molina Aterno	**
	T. Tasso	R1307TS1	Scanno	Scanno	***
	F. Sagittario	R1307SA36bis	Località Arenaro	Anversa degli Abruzzi	****
	1. Sugittario	R1307SA36	Anversa 1 km a valle centrale enel (prima della stazione FFSS)	Anversa degli Abruzzi	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Corso d'acqua	Codice stazione	Località	Comune	Stazioni fase conoscitiva e fase a regime
	F. Ci-ia	R1307GI44	Pettorano (ponte dopo Caserma CC)	Pettorano	*
	F. Gizio	R1307GI45	Dc Vella pc Sagittario - stazione di Sulmona	Sulmona	*
	F. Sagittario	R1307SA40	Corfinio, Capo Canale	Roccacasale	***
	r. Sayıttarıo	R1307SA40bis	Corfinio (loc. Ceselunghe ponte sul fiume)	Corfinio	*
	F. Aterno	R1307AT18	Strada Popoli - Vittorito - 1 km a monte di Popoli	Popoli	*
	F. Pescara	R1307PE20	Popoli, Sorgente Capo Pescara, dal ponte della SS 17	Popoli	*
	r. Pescara	R1307PE1	Popoli, 200m a valle dello scarico del depuratore comunale	Popoli	***
	F. Tivino	R1307TI1	Capestrano, in prossimità di S.Pietro ad Oratorium	Capestrano	***
	F. Tirino	R1307TI53	Bussi, a valle del ponticello della Chiesa, sponda dx	Bussi	*
	F. Pescara	R1307PE22	Località Tremonti	Tocco da Casauria	***
		R1307OR55	Roccacaramanico, 20 m a monte del ponticello, sponda sx	S. Eufemia	*
	F. Orta R1307OR57		Caramanico Terme, stradina a valle dell'ex convento, 100 m dopo il ponticello	Caramanico Terme	*
	F. Orfento	F. Orfento R1307OF3 Caramanico		Caramanico	***
	F. Orta	R1307OR60	Piano D'Orta, 50m a valle del ponte sulla ss 5, sponda sx	Bolognano	*
	F. Lavino	R1307LA4	Lavino a Scafa	Scafa	***
	F. Lavino R1307LA4 R1307PE24 F. Pescara		Rosciano, 50 m a valle del ponte della strada Manoppello- Stazione di Rosciano, sponda dx	Rosciano	*
		R1307PE25	Brecciarola, S.S. Tiburtina Valeria nei pressi del campo sportivo	Chieti	***
		R1307NO64	Carpineto di Nora, stradina 50 m a monte della chiesa, sponda sx	Carpineto della Nora	*
	F. Nora	R1307NO1	Piano del Molino Vecchio	Rosciano	****
		R1307NO68	Cepagatti, loc. Vallemare, 100 m a monte del ponte, sponda sx	Cepagatti	*
		R1307PE25A	Cepagatti, 100m a valle del ponte di Villanova	Chieti	***
	F. Pescara	R1307PE25B	Santa Teresa	Spoltore	***
		R1307PE26	Pescara, 20 m a valle del ponte Villa Fabio, sponda sx	Pescara	*
		R1308LN2A	Serramonacesca a monte depuratore	Serramonacesca	*
Alento	F. Alento	R1308LN4	Madonna del Buonconsiglio a monte depuratore di Chieti	Chieti	*
		R1308LN6	Circa 700 m a valle del ponte A14	Francavilla	*
		R1309FR1	Pretoro Loc. Crocifisso	Pretoro	*
		R1309FR7	Contrada Ponticello	Villamagna	*
Foro	F. Foro	R1309FR10	Circa 100 mt a monte del ponte A14	Miglianico	**
		R1309FR10A	A valle del depuratore	Ortona	*
Arielli	F.so Arielli	R1310RL1	A monte ponte Arielli	Arielli	*
AIICIII	1.30 AHCIII	R1310RL2	Colombo	Tollo	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Corso d'acqua	Codice stazione	Località	Comune	Stazioni fase conoscitiva e fase a regime
		R1310RL3	20 m a monte statale 16 Adriatica	Ortona	***
Riccio	F.so Riccio (°)	R1317RC1A	C.da Riccio – 600 m circa a monte SS 16 Adriatica	Ortona	**
		R1311MR1	Circa 600 m a valle ponte strada per Poggiofiorito	Poggiofiorito	*
Moro	T. Moro	R1311MR2A	A monte ponte strada Caldari- Guastameroli	Ortona	**
		R1311MR3A	Contrada Ripari Ortona	Ortona	*
Feltrino	T. Feltrino	R1312FL1A	A Monte Ponte C.da Santa Maria dei Mesi	Lanciano	**
		R1312FL2A	Marina di S. Vito Chietino	S. Vito Chietino	*
Vallegrande	T. Vallegrande	R1316VG1B	Camping la Foce	Rocca S.Giovanni	**
		I023SN1A	Ponte Campomizzo	Pescasseroli	*
		I023SN1B	A valle depuratore di Opi	Opi	***
	F. Sangro	I023SN1C	2 Km a monte circa della stazione F.F.S.S. di Ateleta	Castel del Giudice	***
		I023SN1	Stazione ferroviaria di Gamberale	Gamberale	*
		I023SN2	Villa S. Maria a valle depuratore	Villa S. Maria	*
Sangro		I023VN5	Palena nei pressi del Comando Guardia Forestale	Palena	*
Sangro		I023VN9	Lama - ponte di ferro	Lama dei Peligni	*
	F. Aventino	I023VN10bis	A valle del lago di Casoli (loc. Torretta)	Casoli	*
		I023VN11	L.tà Guarenna, circa 150 m a monte ponte	Casoli	***
	F. Sangro	I023SN6	Cocco ponte per Atessa circa 600 m a valle	Atessa	*
	3 1	I023SN10B	A monte ponte SS16	Fossacesia	*
		R1313ST2	Ponte Atessa/Casalanguida	Casalanguida	*
_		R1313ST2A	Ponte Casalbordino - Atessa	Pollutri	**
Osento	F. Osento	R1313ST9	Loc. S. Tommaso (ex loc. Le Morge) altezza ponte fiume Osento	Torino di Sangro	*
		R1314SI1	Vicino abitato Montazzoli	Montazzoli	***
		R1314SI4	Guilmi (altezza ponte fiume Sinello-strada che conduce Guilmi a Colledimezzo)	Guilmi	*
Sinello	F. Sinello	R1314SI6A	Piane Ospedale loc. Selva (altezza ponte fiume Sinello- strada che porta da Monteodorisio a Gissi)	Monteodorisio	*
		R1314SI10A	Casalbordino (a valle SS16)	Casalbordino	*
Buonanotte	T. Buonanotte (°)	R1318BN1	Ponte A14	Vasto	**
		I027TG1	Schiavi D'Abruzzo - loc. Valle Cupa (SS 650 Trignina verso sud fino all'uscita Valle Cupa)	Schiavi D'Abruzzo	*
	F. Trigno	I027TG3	S. Giovanni Lipioni, a valle della cava	San Giovanni Lipioni	**
Trigno		I027TG5A	Tufillo - uscita dalla SS 650 Trignina (strada che costeggia la sinistra idrografica)	Tufillo	*
	E Trocks	I027TS16	Carunchio (ponte fiume Treste, altezza strada che porta a Fraine)	Carunchio	*
	F. Treste	I027TS22A	Cupello, S.P. fondovalle treste, 500 m Confluenza Trigno	Cupello	*
	F. Trigno	I027TG11	San Salvo - 400 m a monte del ponte fiume Trigno	San Salvo	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Corso d'acqua	Codice stazione	Località	Comune	Stazioni fase conoscitiva e fase a regime
	F. Giovenco	N005GV13	Circa 3 Km a monte di Ortona dei Marsi	Ortona dei Marsi	*
	r. Giovenco	N005GV15	A valle di Pescina - loc. Pagliarone	Pescina	*
Liri- Garigliano		N005LR1	Castellafiume, loc. Canapine, a valle sorgente Petrella	Cappadocia	*
	F. Liri	N005LR6	Pero dei Santi - ponte ferrovia (km 126)	Civitella Roveto	*
		N005LR9	A valle di Balsorano (circa 2,5 km a valle)	Balsorano	*
		N010IM4	Sante Marie, 200 m prima bivio Scanzano-Gallo	Sante Marie	*
	F. Imele	N010IM6	S. Giacomo - bivio per Sfratati	Tagliacozzo	*
Tevere		N010IM11	Bivio Marano - loc. ponte di Marano	Magliano dei Marsi	*
	F. Turano	N010TU2	M.te Sabbinese, a monte di Carsoli- circa Km 74	Carsoli	*

- Il corpo idrico non costituisce un corso d'acqua significativo, di interesse ambientale o potenzialmente influente sui corpi idrici significativi
- (°°) Stazione di monitoraggio non attiva dal 2006
- * Stazioni presenti nella fase conoscitiva e nel I anno della fase "a regime"
- ** Stazioni aggiunte nel II anno della fase "a regime"
- *** Stazioni aggiunte nel III anno della fase "a regime"
- **** Stazioni aggiunte nel IV anno della fase "a regime"

L'ubicazione delle stazioni di prelievo della rete di monitoraggio è riportata nell'elaborato cartografico "Carta della Rete di Monitoraggio quali-quantitativo delle Acque Superficiali (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-1.

5.1.3.3 Frequenza di campionamento

D.Lgs. 152/99 - Allegato 1

3.2.2 Campionamento

3.2.2.2 Frequenza dei campionamenti

Fase iniziale del monitoraggio

Acque: la misura dei parametri chimici, fisici, microbiologici e idrologici di base e di quelli relativi ai parametri addizionali, quando necessari, deve essere eseguita una volta al mese fino al raggiungimento dell'obiettivo di qualità. Biota: l'IBE va misurato stagionalmente (4 volte l'anno).

I test biologici addizionali e quelli di bioaccumulo, quando richiesti, vanno eseguiti nei periodi di maggiore criticità del sistema.

Fase a regime

La frequenza di campionamento si mantiene inalterata fino al raggiungimento dell'obiettivo di qualità. Raggiunto tale obiettivo, la frequenza di campionamento può essere ridotta dall'autorità competente ma non deve comunque essere inferiore a quattro volte l'anno per i parametri di base di cui alla tabella 4 *(Cfr. par. 5.1.3.1)* e inferiore a due per l'I.B.E.

La frequenza dei campionamenti, così come previsto nell'Allegato 1 al D.Lgs. 152/99, risulta diversificata nel modo sequente:

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1. Fase conoscitiva: 2000 - 2002

Per ciascuna delle n. 85 stazioni di monitoraggio, la misura dei parametri chimici, fisici e microbiologici è stata eseguita con *frequenza mensile* e le rilevazioni di I.B.E. con *frequenza stagionale*.

2. Fase "a regime": 2003-2009

Il monitoraggio "a regime" sulle acque superficiali dei parametri chimici, fisici, microbiologici ed idrologici di base (Tabella 4, Allegato 1 del D.Lgs. 152/99) e di quelli relativi ai parametri addizionali (Tabella 1, Allegato 1 del D.Lgs. 152/99) è stato effettuato con:

- <u>Frequenza mensile</u> per le stazioni:
 - il cui stato di qualità ambientale è risultato, nella prima classificazione della fase conoscitiva, inferiore a "buono" (classe 3, 4 e 5);
 - che hanno registrato alla fine del I anno di monitoraggio a regime un declassamento a giudizi di qualità inferiori a "buono";
 - che sono state aggiunte nel secondo e nel terzo anno a regime;
- Frequenza non inferiore a 4 volte l'anno nelle stazioni il cui stato di qualità ambientale è risultato, nella prima classificazione, "buono" o "elevato" (classi 1 e 2).

Il monitoraggio "a regime" per il biota finalizzato alla valutazione dell'I.B.E. è stato effettuato con:

- Frequenza stagionale per le stazioni:
 - il cui stato di qualità ambientale è risultato, nella prima classificazione della fase conoscitiva, inferiore a "buono" (classe 3, 4 e 5);
 - che hanno registrato alla fine del I anno di monitoraggio a regime un declassamento a giudizi di qualità inferiori a "buono";
 - che sono state aggiunte nel secondo e nel terzo anno a regime;
- <u>Frequenza non inferiore a 2 volte l'anno</u> nelle stazioni il cui stato di qualità ambientale è risultato, nella prima classificazione, "buono" o "elevato" (classi 1 e 2).

La frequenza di campionamento e il numero di parametri analizzati sono stati, in molte stazioni, incrementati per caratterizzare meglio le criticità riscontrate nel corso del monitoraggio.

SERVIZIO QUALITA' DELLE ACQUE

5.1.3.4 Determinazione dello Stato Ecologico

D.Lgs. 152/99 - Allegato 1

3.2.3 Classificazione

La classificazione dello **stato ecologico**, (tabella 8) viene effettuata incrociando il dato risultante dai macrodescrittori con il risultato dell'I.B.E., attribuendo alla sezione in esame o al tratto da essa rappresentato il risultato peggiore tra quelli derivati dalle valutazioni relative ad I.B.E. e macrodescrittori.

Per la valutazione del risultato dell'**I.B.E.** si considera il valore medio ottenuto dalle analisi eseguite durante il periodo di misura per la classificazione.

Il livello di qualità relativa ai macrodescrittori L.I.M. viene attribuito utilizzando la tabella 7.

Ai fini della classificazione devono essere disponibili almeno il 75% dei risultati delle misure eseguibili nel periodo considerato.

Lo stesso parametro statistico del 75° percentile viene usato per la eventuale valutazione dello stato di qualità chimica concernente gli inquinanti chimici indicati in tabella 1.

Tabella 7 - Livello di inquinamento espresso dai macrodescrittori

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100-OD (%sat.)(*)	<u><</u> 10 (#)	<u><</u> 20	<u><</u> 30	<u><</u> 50	>50
BOD5 (O ₂ mg/L)	<2,5	<u><</u> 4	<u><</u> 8	<u><</u> 15	>15
COD (O₂ mg/L)	<5	<u><</u> 10	<u><</u> 15	<u><</u> 25	>25
NH ₄ (N mg/L)	<0,03	<u><</u> 0,10	<u><</u> 0,50	<u><</u> 1,50	>1,50
NO_3 (N mg/L)	<0,3	<u><</u> 1,5	<u><</u> 5,0	<u><</u> 10,0	>10,0
Fosforo totale (Pmg/L)	<0,07	<u><</u> 0,15	<u><</u> 0,30	<u><</u> 0,60	>0,60
Escherichia coli (UFC/100 mL)	<100	<u><</u> 1.000	<u><</u> 5.000	<u><</u> 20.000	>20.000
Punteggio da attribuire per ogni parametro analizzato (75° percentile del periodo di rilevamento)	80	40	20	10	5
LIVELLO DI INQUINAMENTO DAI MACRODESCRITTORI	480-560	240-475	120-235	60-115	<60

^(*) la misura deve essere effettuata in assenza di vortici; il dato relativo al deficit o al surplus deve essere considerato in valore assoluto

Tabella 8 - Stato ecologico dei corsi d'acqua (si consideri il risultato peggiore tra I.B.E. e macrodescrittori)

Classe SECA	CLASSE 1	CLASSE 2	CLASSE 3	CLASSE 4	CLASSE 5
I.B.E.	≥10	8-9	6-7	4-5	1,2,3
LIVELLO DI INQUINAMENTO MACRODESCRITTORI	480-560	240-475	120-235	60-115	<60

La definizione dello Stato Ecologico dei Corsi d'Acqua (**SECA**) è stata effettuata incrociando i risultati del monitoraggio dei macrodescrittori (**L.I.M.**) con il valore dell'**I.B.E.** e attribuendo alla stazione in esame il risultato peggiore tra quelli derivanti dalle due valutazioni.

Per il calcolo e la valutazione del **L.I.M.** e del **SECA** si è fatto riferimento al documento "Procedure di calcolo dello stato ecologico dei corsi d'acqua e di rappresentazione grafica delle informazioni" (R. Spaggiari e S. Franceschini - Biologia Ambientale, 14 (2): 1-6, 2000).

La determinazione dell'indice **L.I.M.** è stata effettuata mediante l'introduzione dei seguenti accorgimenti:

 per il parametro OD²¹ è stato calcolato il 75° percentile del valore assoluto della differenza (100-O₂) per ogni misura disponibile;

QUADRO_CONOSCITIVO

93

^(#) in assenza di fenomeni di eutrofia

Questo macrodescrittore misura (mg/l o % di saturazione, ecc.) la saturazione delle acque relativa alla solubilità (temperatura e salinità), ai processi di degradazione, respirazione e fotosintesi. Esso serve a valutare i fattori che modificano la saturazione

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

nei casi in cui le misure dei parametri chimico-fisici siano risultati minori del limite di rilevabilità previsto dalla metodica di analisi impiegata è stato usato, per il calcolo del 75° percentile, la metà del valore di soglia, così come convenzionalmente effettuato in statistica. Per tale motivo compaiono, in alcune tabelle di calcolo del L.I.M., valori del 75° percentile di alcuni parametri che possono risultare anche inferiori al limite di rilevabilità della stessa metodica impiegata per l'analisi. Tutti i valori sono stati approssimati al 2° decimale.

Per l'esecuzione delle analisi biologiche (**I.B.E.**) si è fatto riferimento al "*Manuale di applicazione dell'Indice Biotico Esteso: i macroinvertebrati nel controllo della qualità degli ambienti di acqua corrente*" (a cura del Prof. P. F. Ghetti, 1997).

Seguendo le indicazione del D.Lgs. 152/99, poiché le classi **I.B.E.** non prevedono valori di classi intermedie, per convenzione, nei casi di valori di IBE tipico di passaggio fra classi si è adottato il criterio di assumere, come valore di sorgente, quello della classe indicata per prima: ad esempio, I classe per classi di qualità I/II e II classe per II/I così come indicato da una apposita commissione insediata presso l' APAT (Spaggiari & Franceschini, 2000).

Le metodologie di campionamento e di analisi dei **parametri chimico-fisici** e dei **parametri microbiologici** (*Escherichia coli*) ricercati sono conformi a quanto indicato nelle metodiche ufficiali dell'Istituto di Ricerca sulle Acque (IRSA n. 100/1994) al quale si rimanda per tutti i dettagli tecnici e metodologici.

5.1.3.5 Determinazione dello Stato Chimico

Per la determinazione dello stato chimico delle acque, definito dalla presenza delle sostanze chimiche pericolose elencate nella Tabella 1 del D.Lgs. 152/99 (Cfr. par. 5.1.1), sono state utilizzate, come riferimento, le linee guida e le schede estrapolate dalla pubblicazione del CTN_AIM (Centro Tematico Nazionale - Acque Interne e Marino Costiere) sui "*Criteri di selezione dei parametri addizionall*" (AIM_T_LGU_00_02), desunti dalle principali normative europee e da autorevoli organismi internazionali.

Ciò ha permesso di individuare i valori soglia di riferimento delle sostanze chimiche pericolose (**Tabella 5.2**). In base al superamento o meno di tali valori viene definito lo stato chimico del corpo idrico.

Come evidenziato nel successivo paragrafo 5.1.3.6, tali risultati incrociati con quelli ottenuti dalla determinazione del SECA hanno reso possibile l'attribuzione dello stato di qualità ambientale del corso d'acqua (SACA).

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.2 -Valori soglia di riferimento per i parametri di cui alla Tabella 1 - Allegato 1 al D.Lgs. 152/99, così come indicati in: "Centro Tematico Nazionale - Acque Interne e Marino costiere", Criteri di selezione dei parametri addizionali, 2000)

			•				
Parametro	Unità di misura	Valore soglia	Riferimento				
Cadmio	μg/l	2,5	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Cromo totale	μg/l	20	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Mercurio	μg/l	0,5	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Nichel	μg/l	75	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Piombo	μg/l	10	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Rame	μg/l	40	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Zinco	μg/l	300	D.Lgs 152/99 all.2, valore Imperat. Acque Salmonicole				
Aldrin	μg/l	0,01	Direttiva 86/280				
Dieldrin	μg/l	0,01	Direttiva 86/280				
Endrin	μg/l	_ *	-				
Isodrin	μg/	_*	-				
Esaclorobenzene	μg/l	0,03	Direttiva 86/280				
Esaclorobutadiene	μg/l	0,1	Direttiva 86/280				
1-2 dicloroetano	μg/l	10	Direttiva 86/280				
Tricloroetilene	μg/l	10	Direttiva 86/280				
Triclorobenzene	μg/l	0,4	Direttiva 86/280				
Cloroformio	μg/l	12	Direttiva 86/280				
Tetrocloruro di carbonio	μg/l	-	Direttiva 86/280				
Percloroetilene	μg/l	10	Direttiva 86/280				
Pentaclorofenolo	μg/l	2	Direttiva 86/280				
DDT e analoghi (DD's)	μg/l	25	Direttiva 86/280				
Isomeri esaclorocicloesano (HCH's)	μg/l	0,05	Direttiva 84/491				

^{*} Valori soglia non fissati per il compartimento ambientale acque

5.1.3.6 Attribuzione dello Stato Ambientale

D.Lgs. 152/99 Allegato 1

3.2.4 Attribuzione dello stato di qualità ambientale

Al fine della attribuzione dello **stato ambientale** del corso d'acqua i dati relativi allo stato ecologico andranno rapportati con i dati relativi alla presenza degli inquinanti chimici indicati in Tabella 1, secondo lo schema riportato alla Tabella 9:

Tabella 9 - Stato ambientale dei corsi d'acqua

Stato Ecologico	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
Concentrazione inquinanti di cui alla tabella 1					
≤ Valore Soglia	ELEVATO	BUONO	SUFFICIENTE	SCADENTE	PESSIMO
> Valore Soglia	SCADENTE	SCADENTE	SCADENTE	SCADENTE	PESSIMO

La definizione dello Stato Ambientale dei Corsi d'Acqua (SACA) è stata effettuata secondo la metodologia di classificazione indicata dal D.Lgs. 152/99 (modificato ed integrato dal D.Lgs. 258/00), incrociando il risultato dello Stato Ecologico e dello Stato Chimico.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.3.7 Risultati

Nel seguente paragrafo sono riportati i risultati ottenuti dall'analisi dei dati raccolti durante i quattro diversi periodi di monitoraggio esaminati [*fase conoscitiva* (2000-2002), *I anno* (maggio 2003-aprile 2004), *II anno* (maggio 2004-aprile 2005) e *III anno* (gennaio- dicembre 2006), **IV anno** (gennaio- dicembre 2007), **V anno** (gennaio- dicembre 2008), **VI anno** (gennaio- dicembre 2009) di *monitoraggio a regime*].

In particolare, sono riportati nella **tabella 5.3** i risultati relativi all'Indice Biotico Esteso (I.B.E.), al Livello di Inquinamento da Macrodescrittori (L.I.M.), allo Stato Ecologico dei Corsi d'Acqua (S.E.C.A.) e a quello Ambientale (S.A.C.A) nei vari anni di monitoraggio fino al 2006.

Nella **Tabella 5.3 bis** vengono riportati i risultati relativi all'Indice Biotico Esteso (I.B.E.), al Livello di Inquinamento da Macrodescrittori (L.I.M.), allo Stato Ecologico dei Corsi d'Acqua (S.E.C.A.) e a quello Ambientale (S.A.C.A) nel 2009 ed il confronto con i risultati del 2007 e del 2008.

Nell'**Appendice 1** al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo", redatta da Arta Abruzzo al fine di dare seguito alle previsioni della Convenzione appositamente stipulata con la Regione Abruzzo, vengono descritti in dettaglio risultati delle attività di monitoraggio svolte nel 2009, confrontati con quelli degli anni precedenti e viene fornito un giudizio di qualità dei corsi d'acqua regionali.

Lo stato ecologico dei corsi d'acqua relativo al 2009 è riportato nell'elaborato cartografico "Carta dello Stato Ecologico dei Corsi d'acqua Superficiali e dei Laghi (Monitoraggio 2009)", in scala 1:250.000, Tavola 4 -2.

Lo stato ambientale dei corsi d'acqua relativo al 2009 è riportato nell'elaborato cartografico "Carta dello Stato Ambientale dei Corsi d'acqua Superficiali, dei Laghi e dei Canali artificiali (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-3.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.3 - Sintesi dei risultati ottenuti dal monitoraggio effettuato durante la fase conoscitiva, I, II e III anno a regime

			Prima classificazione						Monitoraggio "a regime"													
Bacino	Corso d'acqua	Codice stazione		Fase con	oscitiva: 200	0-200222		I anno di mo	nitoraggio	o: maggio	2003 - apri	ile 2004 ²³	II ann	o di monito	oraggio: ma 2005 ²⁴	iggio 2004	- aprile	III an		itoraggio: embre 200	gennaio 2 06 ²⁵	.006 –
	u ucquu	Stuzione	Classe L.I.M	1. Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.
Tuente	Castellano	I028CA3	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	1	II	2	< v.soglia	buono
Tronto	Tronto	I038TR1A	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente
		R1301VB1	2	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono
\/ibyata	Vibrata	R1301VB2	-	=	=	-	-	-	-	-	-	-	5	V	5	< v.soglia	pessimo	5	٧	5	< v.soglia	pessimo
Vibrata	VIDITALA	R1301VB2bis	4	IV	4	< v.soglia	scadente	5	IV	5	< v.soglia	pessimo	5	٧	5	< v.soglia	pessimo	5	IV	5	< v.soglia	pessimo
		R1301VB2ter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	III	4	< v.soglia	scadente
		R1302SL1	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono
Salinello	Salinello	R1302SL3	2	II	2	< v.soglia	buono	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono
Salificilo	Salificilo	R1302SL5	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente
		R1302SL6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	III	3	< v.soglia	sufficiente
		R1303TD1	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	1	I	1	< v.soglia	elevato
		R1303TD4	2	II	2	< v.soglia	buono	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono
Tordino	Tordino	R1303TD6	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente
Toruno		R1303TD8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	IV	4	< v.soglia	scadente
		R1303TD9	3	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente
	Vezzola	R1303VZ13	2	II	2	< v.soglia	buono	2	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono
		R1304VM1	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	1	I	1	< v.soglia	elevato
		R1304VM3	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono
	Vomano	R1304VM5	-	-	-	-	-	-	-	-	-	-	3	II	3	< v.soglia	sufficiente	2	I	2	< v.soglia	buono
Vomano		R1304VM6	2	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente
Voltidilo		R1304VM7	3	III	3	< v.soglia	sufficiente	3	IV	4	< v.soglia		4	V	5	< v.soglia	pessimo	3	IV	4	< v.soglia	
	Mavone	R1304MA15	2	I	2	< v.soglia	buono	3	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono
	riavone	R1304MA18	2	II	2	< v.soglia	buono	2	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	3	III	3	< v.soglia	
	Leomogna	R1305LE16	2	I	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	
Cerrano	Cerrano	R1315CR1	3	III	3	< v.soglia	sufficiente	4	IV	4	< v.soglia	scadente	4	V	5	< v.soglia	pessimo	4	IV	4	< v.soglia	
		R1305PM1	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	3	II	3	< v.soglia	
Piomba	Piomba	R1305PM1bis	-	-	-	-	-	-	-	-	-	-	4	III	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente
i ioniba	, ioinea	R1305PM3	3	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	3	IV	4	< v.soglia	scadente	3	IV	4	< v.soglia	scadente
		R1305PM4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	IV	4	< v.soglia	
		R1306TA11	2	II	2	< v. soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v. soglia	buono	2	I	2	< v.soglia	buono
	Tavo	R1306TA12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	II	2	< v.soglia	buono
	7470	R1306TA13	3	III	3	< v. soglia	sufficiente	3	III	3	< v.soglia	sufficiente	4	IV	4	< v. soglia	scadente	4	IV	4	< v.soglia	scadente
		R1306TA17	3	III	3	< v. soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v. soglia	sufficiente	3	III	3	< v.soglia	
Fino-Tavo-		R1306FI4	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono	2	III	3	< v. soglia	sufficiente	2	III	3	< v.soglia	
Saline	Fino	R1306FI7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	III	3	< v.soglia	
		R1306FI8	3	II	3	< v. soglia	sufficiente	3	III	3	< v.soglia	sufficiente	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono
		R1306SA1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	III	3	< v.soglia	
	Saline	R1306SA2A	-	-	<u>-</u>		-	-	-	-		-		-	-		-	3	III	3	< v.soglia	
		R1306SA2	3	III	3	< v. soglia	sufficiente	4	V	5	< v.soglia	pessimo	4	V	5	< v. soglia	pessimo	4	V	5	< v.soglia	
		R1307AT3	2	II	2	< v.soglia	buono	4	II	4	< v.soglia	scadente	3	II	3	< v.soglia	sufficiente	-	-	-		-
Aterno-	Aterno	R1307AT3bis	-	-		-	-	-	-	-	-	-		-	-	-	-	2	II	2	< v.soglia	buono
Pescara		R1307AT8bis	-	-	<u> </u>		-	-	-	-		-	-	-	-		-	3	III	3	< v.soglia	sufficiente
		R1307AT8	3	III	3	< v.soglia	sufficiente	5	IV	5	< v.soglia	pessimo	4	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente

²² Fonte: "Il monitoraggio e la prima classificazione delle acque ai sensi del D.lgs. 152/99", 2003, Bioprogramm – Ecogest, Regione Abruzzo

Fonte: "Monitoraggio dei corsi d'acqua della Regione Abuzzo D.L.vo 152/99 - I° anno fase a regime (maggio 2003 – aprile 2004)", Regione Abruzzo - ARTA Abruzzo

Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, II° anno di monitoraggio a regime maggio 2004 – aprile 2005", Regione Abruzzo - ARTA Abruzzo

²⁵ Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, III° anno di monitoraggio a regime gennaio 2006 – dicembre 2006", Regione Abruzzo - ARTA Abruzzo

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

				Prin	na classificaz	ione								Monitor	aggio "a reg	gime"					
Bacino	Corso d'acqua	Codice stazione	Fase conoscitiva: 2000-2002 ²²				I anno di mo	nitoraggio	: maggio	2003 - apri	ile 2004 ²³	II anno	di monito	oraggio: ma 2005 ²⁴	aggio 2004	- aprile	III an	no di mon dic	itoraggio: embre 20	: gennaio 2006 – 06 ²⁵	
	u acqua	Stazione	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato S.A.C.A.
		R1307AT9	-	-	-	-	-	-	-	-	-	-	4	IV	4	< v.soglia	scadente	3	III	3	< v.soglia sufficiente
		R1307AT12	2	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia sufficiente
		R1307AT15	-	-	-	-	-	-	-	-	-	-	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia sufficiente
		R1307AT18	2	III	3	< v.soglia	sufficiente	4	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia sufficiente
_	Raio	R1307RA29	4	III	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	4	III	4	< v.soglia scadente
-	Vera	R1307VE34	2	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia buono
	o	R1307SA36	2	III	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	non applicabile	2	< v.soglia	non definibile	2	II	2	< v.soglia buono
	Sagittario	R1307SA40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	II	3	< v.soglia sufficiente
		R1307SA40bis	2	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	3	IV	4	< v.soglia	scadente	2	III	3	< v.soglia sufficiente
	Gizio	R1307GI44	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia buono
	GIZIU	R1307GI45	3	IV	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente	3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia sufficiente
	Tasso	R1307TS1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	II	2	< v.soglia buono
		R1307PE20	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v. soglia	buono	2	II	2	< v.soglia buono
	Pescara	R1307PE1	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	2	II	2	< v.soglia buono
		R1307PE24	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono	2	III	3	< v. soglia	sufficiente	2	III	3	< v.soglia sufficiente
		R1307PE25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	III	3	< v.soglia sufficiente
		R1307PE25A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	III	3	< v.soglia sufficiente
		R1307PE25B	-	-	-	26	-	-	-	-		-	-	-	-		-	3	n.c.	n.c.	< v.soglia n.c.
-		R1307PE26	3	IV	4	> v. soglia ²⁶	scadente	2	IV	4	< v.soglia	scadente	3	IV	4	< v. soglia		3	IV	4	< v.soglia scadente
	Tirino	R1307TI11	-	-	-		- buene	2	- 11	2		- buene	2	-	2		- buene	2	II	2	< v.soglia buono < v.soglia sufficiente
-		R1307TI53 R1307OR55	2 2	II	2 2	< v. soglia < v. soglia	buono buono	2	II ī	2	< v.soglia	buono buono	2	II	2	< v. soglia		2	III II	3 2	< v.soglia sufficiente < v.soglia buono
	Orta	R1307OR57	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v. soglia		2	III	3	< v.soglia buorio < v.soglia sufficiente
	Orta	R1307OR57	2	II	2	< v. soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v. soglia		2	II	2	< v.soglia sumciente < v.soglia buono
-		R1307NO64	2	Ī	2	< v. soglia	buono	2	I	2	< v.soglia	buono	2	Ī	2	< v. soglia		2	Ī	2	< v.soglia buono
	Nora	R1307NO68	2	II	2	< v. soglia	buono	3	II	3	< v.soglia	sufficiente	3	II	3	< v. soglia		3	III	3	< v.soglia sufficiente
-	Lavino	R1307LA4	-	-	-		-	-	-	-	- visogiia	-	-	-	-	- v. sogna	-	2	III	3	< v.soglia sufficiente
-	Orfento	R13070F3	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	2	I	2	< v.soglia buono
		R1308LN2A	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	1	I	1	< v.soglia elevato
Alento	Alento	R1308LN4	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia		3	III	3	< v.soglia sufficiente
		R1308LN6	3	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	4	III	4	< v.soglia		4	III	4	< v.soglia scadente
		R1309FR1	1	II	2	< v.soglia	buono	1	II	2	< v.soglia	buono	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia buono
Foro	Foro	R1309FR7	2	III	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia buono
FUIU	Γυιυ	R1309FR10	-	-	-	-	-	-	-	-	-	-	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia sufficiente
		R1309FR10A	3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia		2	III	3	< v.soglia sufficiente
		R1310RL1	2	II	2	< v.soglia	buono	2	II	2	< v.soglia		2	II	2	< v.soglia		2	II	2	< v.soglia buono
Arielli	Arielli	R1310RL2	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia sufficiente
		R1310RL3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	IV	4	< v.soglia scadente
Riccio	Riccio	R1317RC1A	-	-	-	-	-	-	-	-	-	-	4	III	4	< v.soglia		4	IV	4	< v.soglia scadente
		R1311MR1	3	III	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	3	III	3		sufficiente	3	III	3	< v.soglia sufficiente
Moro	Moro	R1311MR2A	-	-			-	-	-	-		-	3	III	3	< v.soglia		2	III	3	< v.soglia sufficiente
.	<i></i>	R1311MR3A	4	V	5	< v.soglia	pessimo	4	V	5	< v.soglia	pessimo	4	IV	4	< v.soglia		4	IV	4	< v.soglia scadente
Feltrino	Feltrino	R1312FL1A	-	-	-	-	-	-	-	-	-	-	4	V	5	< v.soglia	pessimo	3	IV	4	< v.soglia scadente

²⁶ La concentrazione dell'inquinante Cloroformio pari a 29900 μg/l supera il valore soglia fissato a 12 μg/l.

SERVIZIO QUALITA' DELLE ACQUE

	Corso d'acqua		Prima classificazione					Monitoraggio "a regime"														
Bacino		Codice stazione	Fase conoscitiva: 2000-2002 ²²				I anno di monitoraggio: maggio 2003 - aprile 2004 ²³					II anno	o di monito	oraggio: ma 2005 ²⁴	aggio 2004 ·	- aprile	III anno di monitoraggio: gennaio 2006 – dicembre 2006 ²⁵					
			Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.	Classe L.I.M.	Classe I.B.E	S.E.C.A	Stato chimico	S.A.C.A.
		R1312FL2A	4	V	5	> v.soglia ²⁷	pessimo	4	V	5	< v.soglia	pessimo	4	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	
Vallegrande	Vallegrande	R1316VG1B	-	-	-	-	-	-	-	-	-	-	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	
		I023SN1A	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	1	I	1	< v.soglia	elevato	1	I	1	< v.soglia	
		I023SN1B	=	-	=	=	-	-	-	-	-	-	-	-	=	-	-	3	III	3	< v.soglia	sufficiente
		I023SN1C	=	-	=	=	-	-	-	-	-	-	-	-	=	-	-	2	I	2	< v.soglia	buono
	Sangro	I023SN1	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	1	I	1	< v.soglia	elevato	1	I	1	< v.soglia	elevato
		I023SN2	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	1	II	2	< v.soglia	buono	1	II	2	< v.soglia	buono
Sangro		I023SN6	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
		I023SN10B	3	II	3	< v.soglia	sufficiente	3	II	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
		I023VN5	2	II	2	< v.soglia	buono	2	I	2	< v.soglia	buono	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia	buono
	Aventino	I023VN9	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono
		I023VN10bis	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	III	3	< v.soglia	sufficiente
		I023VN11	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	2	III	3	< v.soglia	sufficiente
	Osento	R1313ST2	3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente	3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente
Osento		R1313ST2A	-	-	-	-	-	-	-	-	-	-	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente
		R1313ST9	3	IV	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente
	Sinello	R1314SI1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	I	1	< v.soglia	elevato
Sinello		R1314SI4	2	III	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
Siricilo		R1314SI6A	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	
		R1314SI10A	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente
Buonanotte	Buonanotte	R1318BN1	=	-	=	=	-	-	-	-	-	-	3	IV	4	< v.soglia	scadente	2	III	3	< v.soglia	sufficiente
		I027TG1	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
	Triano	I027TG3	-	-	-	-	-	-	-	-	-	-	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
Trigno	rrigito	I027TG5A	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	1	II	2	< v.soglia	buono
Trigilo		I027TG11	2	II	2	> v.soglia ²⁸	scadente	3	III	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
	Treste	I027TS16	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
	77656	I027TS22A	2	III	3	< v.soglia	sufficiente	2	III	3	< v.soglia	sufficiente	2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
	Giovenco	N005GV13	1	I	1	< v.soglia	elevato	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	II	2	< v.soglia	buono
	Gioveneo	N005GV15	3	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente
Liri		N005LR1	2	I	2	< v.soglia	buono	3	II	3	< v.soglia	sufficiente	2	I	2	< v.soglia	buono	2	II	2	< v.soglia	
	Liri	N005LR6	2	III	3	< v.soglia	sufficiente	4	II	4	< v.soglia	scadente	3	II	3	< v.soglia	sufficiente	3	III	3	< v.soglia	sufficiente
		N005LR9	3	III	3	< v.soglia	sufficiente	4	IV	4	< v.soglia		3	IV	4	< v.soglia	scadente	3	III	3	< v.soglia	sufficiente
		N010IM4	2	II	2	< v.soglia	buono	3	II	3	< v.soglia		2	II	2	< v.soglia	buono	2	II	2	< v.soglia	buono
Tevere	Imele	N010IM6	3	IV	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente
10,000		N010IM11	3	II	3	< v.soglia	sufficiente	4	III	4	< v.soglia	scadente	4	IV	4	< v.soglia	scadente	4	III	4	< v.soglia	scadente
	Turano	N010TU2	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	I	2	< v.soglia	buono	2	II	2	< v.soglia	buono

La concentrazione dell'inquinante Mercurio pari a 4 μg/l supera il valore soglia fissato a 0,5 μg/l.
 La concentrazione dell'inquinante 1,2 Dicloroetano pari a 37,3 μg/l supera il valore soglia fissato a 10 μg/l.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.3 bis - Sintesi dei risultati ottenuti dal monitoraggio effettuato nel 2009 e confronto con risultati 2007 e 2008.

Bacino	Fiume	Codice stazione	SACA 2007 ²⁹ SACA 2008 ³⁰		SACA 2009 ³¹	LIM 2	2009	IBE :	2009	SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
						Punteggio	Livello	Valore	Classe	Classe	
Tronto	Castellano	I028CA3	Buono	Sufficiente	Buono	520	1	9	II	2	< V. soglia
	Tronto	I038TR1A	Sufficiente	Sufficiente	Sufficiente	250	2	7	III	3	< V. soglia
		R1301VB1	n.c.	Buono	Buono	370	2	9	II	2	< V. soglia
Vibrata	Vibrata	R1301VB2	Pessimo	Pessimo	Pessimo	65	4	3	V	5	< V. soglia
Vibrata		R1301VB2bis	Pessimo	Scadente	Scadente	60	4	5	IV	4	< V. soglia
		R1301VB2ter	Scadente	Scadente	Scadente	85	4	5	IV	4	< V. soglia
	Salinello	R1302SL1	Elevato	Elevato	Elevato	560	1	10	I	1	< V. soglia
Salinello		R1302SL3	Buono	Buono	Buono	440	2	9	II	2	< V. soglia
Salifiello		R1302SL5	Buono	Sufficiente	Sufficiente	200	3	8	II	3	< V. soglia
		R1302SL6	Sufficiente	Buono	Buono	280	2	8	II	2	< V. soglia
	Tordino	R1303TD1	Elevato	Buono	Elevato	560	1	10	I	1	< V. soglia
		R1303TD4	Buono	Buono	Buono	420	2	9	II	2	< V. soglia
	Tordino	R1303TD6	Buono	Sufficiente	Buono	270	2	8	II	2	< V. soglia
Tordino	TOTAITO	R1303TD8	Scadente	Scadente	Scadente	115	4	5	IV	4	< V. soglia
		R1303TD9	Scadente	Scadente	Scadente	130	3	5	IV	4	< V. soglia
	Vezzola	R1303VZ13	Buono	Buono	Buono	360	2	9	II	2	< V. soglia
Vamana	Leomogna	R1304LE16	Buono	Elevato	Elevato	560	1	10	I	1	< V. soglia
Vomano	Mavone	R1304MA15	Sufficiente	Buono	Buono	340	2	9	II	2	< V. soglia

QUADRO CONOSCITIVO

100

²⁹ Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, monitoraggio gennaio 2007 – dicembre 2007", Regione Abruzzo - ARTA Abruzzo ³⁰ Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, monitoraggio gennaio 2008 – dicembre 2008", Regione Abruzzo - ARTA Abruzzo

³¹ Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, monitoraggio gennaio 2009 – dicembre 2009", Regione Abruzzo - ARTA Abruzzo

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

101

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Fiume	Codice stazione	SACA 2007 ²⁹	SACA 2008 ³⁰ SACA 2009 ³¹		LIM 2		IBE :		SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
	Mavone	R1304MA18	Sufficiente	Sufficiente	Sufficiente	Punteggio 300	Livello 2	Valore 7	Classe III	Classe 3	< V. soglia
	Mavone	R1304VM1	Elevato	Elevato	Elevato	520	_	11		-	-
	Vomano	R1304VM3	Buono	Elevato	Elevato	520	1	10	I	1	< V. soglia < V. soglia
Vomano	VUITIATIU	R1304VM5	Buono	Buono	Buono	290	2	10	I	2	< V. soglia
	Vomano	R1304VM6	Sufficiente	Buono	Sufficiente	340	2	7	III	3	-
		R1304VM7	Scadente	Sufficiente	Sufficiente	240	2	6	III	3	< V. soglia < V. soglia
Cerrano	Cerrano	R1315CR1	Scadente	Scadente	Scadente	95	4	4	IV	4	< V. soglia
Cerrano	cerrano	R1305PM1	Buono	Buono	Buono	250	2	9	II	2	< V. soglia
Piomba	Piomba	R1305PM1bis	n.c.	Scadente	Sufficiente	210	3	6	III	3	< V. soglia
		R1305PM3	n.c.	Scadente	Sufficiente	130	3	6	III	3	< V. soglia
Piomba	Piomba	R1305PM4	n.c.	Scadente	Pessimo	140	3	3	V	5	< V. soglia
	Fino	R1306FI4	Sufficiente	Sufficiente	Sufficiente	320	2	6	III	3	< V. soglia
		R1306FI7	Scadente	Scadente	Scadente	220	3	5	IV	4	< V. soglia
		R1306FI8	Sufficiente	Scadente	Sufficiente	210	3	6	III	3	< V. soglia
		R1306SA1	Scadente	Scadente	Sufficiente	190	3	6	III	3	< V. soglia
Fino-Tavo	Saline	R1306SA2A	Sufficiente	Scadente	Sufficiente	155	3	6	III	3	< V. soglia
Saline		R1306SA2	Pessimo	Scadente	n.c.	110	4	n.a.	n.c.	n.c.	< V. soglia
		R1306TA11	Buono	Buono	Buono	400	2	10	I	2	< V. soglia
	Tavo	R1306TA12	Sufficiente	Buono	Buono	420	2	8	II	2	< V. soglia
		R1306TA13	Scadente	Scadente	Pessimo	135	3	3	V	5	< V. soglia
Fino-Tavo	T	R1306TA14	Sufficiente	Sufficiente	Sufficiente	260	2	6	III	3	< V. soglia
Saline	Tavo	R1306TA17	Sufficiente	Scadente	Scadente	230	3	5	IV	4	< V. soglia
		R1307AT3bis	Sufficiente	Buono	Buono	280	2	10	I	2	< V. soglia
Aterno- Pescara	Aterno	R1307AT8	Scadente	Scadente	Scadente	165	3	5	IV	4	< V. soglia
PESCAIA		R1307AT8bis	Scadente	Scadente	Scadente	185	3	5	IV	4	< V. soglia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Fiume	Codice stazione			SACA 2009 ³¹	LIM 2		IBE :		SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
		D12074T0	C CC : I	C 1 1	C 1 1	Punteggio	Livello	Valore	Classe	Classe	
		R1307AT9	Sufficiente	Scadente	Scadente	220	3	5	IV/III	4	< V. soglia
		R1307AT12	Sufficiente	Scadente	Sufficiente	220	3	6	III	3	< V. soglia
	Aterno	R1307AT15	Sufficiente	Sufficiente	Sufficiente	230	3	8	II	3	< V. soglia
		R1307AT18	Sufficiente	Sufficiente	Sufficiente	290	2	7	III	3	< V. soglia
	Raio	R1307RA29	Scadente	n.c.	Scadente	90	4	6	III	4	< V. soglia
	Vera	R1307VE34	Sufficiente	Sufficiente	Sufficiente	330	2	7	III	3	< V. soglia
	Sagittario	R1307SA36	Buono	Buono	Buono	280	2	8	II	2	< V. soglia
		R1307SA36bis	Buono	Buono	Buono	340	2	10	I	2	< V. soglia
	Sagittario	R1307SA40	Sufficiente	Sufficiente	Sufficiente	245	2	6	III	3	< V. soglia
Aterno- Pescara	Sayıttarıo	R1307SA40bis	Sufficiente	Sufficiente	Sufficiente	205	3	7	III	3	< V. soglia
i escara	Gizio	R1307GI44	Buono	Buono	Buono	440	2	11	I	2	< V. soglia
	G1210	R1307GI45	Sufficiente	Sufficiente	Sufficiente	225	3	7	III	3	< V. soglia
	Tasso	R1307TS1	Buono	Buono	Buono	320	2	8	II	2	< V. soglia
		R1307PE20	Buono	Sufficiente	Sufficiente	310	2	7	III	3	< V. soglia
		R1307PE1	Buono	Sufficiente	Scadente	270	2	5	IV	4	< V. soglia
	Pescara	R1307PE22	Buono	Buono	Sufficiente	290	2	7	III	3	< V. soglia
		R1307PE24	Buono	Buono	Sufficiente	330	2	7	III	3	< V. soglia
		R1307PE25	Buono	Sufficiente	Sufficiente	285	2	6	III	3	< V. soglia
		R1307PE25A	Sufficiente	Sufficiente	n.c.	265	2	n.a.	n.c.	n.c.	< V. soglia
Aterno -	Pescara	R1307PE25B	n.c.	n.c.	n.c.	290	2	n.a.	n.c.	n.c.	< V. soglia
Pescara		R1307PE26	Scadente	Scadente	Scadente	290	2	5	IV	4	< V. soglia
	·	R1307TI1	Buono	Buono	Buono	340	2	9	II	2	< V. soglia
	Tirino	R1307TI53	Sufficiente	Sufficiente	Sufficiente	320	2	7	III	3	< V. soglia
		R1307NO1	Buono	Sufficiente	Sufficiente	320	2	6	III	3	< V. soglia
	Nora	R1307NO64	Buono	Buono	Buono	300	2	9	II	2	< V. soglia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Fiume	Codice stazione	SACA 2007 ²⁹	SACA 2008 ³⁰	SACA 2009 ³¹	LIM 2009 Punteggio Livello		IBE 2009 Valore Classe		SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
					0.00					Classe	
		R1307NO68	Sufficiente	Sufficiente	Sufficiente	250	2	7	III	3	< V. soglia
		R1307OR55	Buono	Buono	Buono	480	1	9	II	2	< V. soglia
	Orta	R1307OR57	Sufficiente	Sufficiente	Sufficiente	380	2	7	III	3	< V. soglia
		R1307OR60	Buono	Buono	Sufficiente	440	2	7	III	3	< V. soglia
	Lavino	R1307LA4	Buono	Buono	Sufficiente	400	2	7	III	3	< V. soglia
	Orfento	R1307OF3	Sufficiente	Buono	Buono	370	2	10	I	2	< V. soglia
		R1308LN2A	Buono	Buono	Buono	380	2	10	I	2	< V. soglia
Alento	Alento	R1308LN4	Scadente	Scadente	Scadente	80	4	6	III	4	< V. soglia
		R1308LN6	Scadente	Sufficiente	Scadente	95	4	7	III	4	< V. soglia
Гочо	Fa40	R1309FR1	Buono	Buono	Elevato	480	1	10	I	1	< V. soglia
Foro	Foro	R1309FR7	Sufficiente	Buono	Buono	250	2	8	II	2	< V. soglia
Гочен	Foro	R1309FR10	Sufficiente	Buono	Sufficiente	170	3	8	II	3	< V. soglia
Foror	FUIU	R1309FR10A	Scadente	Scadente	Sufficiente	130	3	6	III	3	< V. soglia
		R1310RL1	Buono	Buono	Sufficiente	180	3	9	II	3	< V. soglia
Arielli	Arielli	R1310RL2	Sufficiente	Sufficiente	Scadente	110	4	7	III	4	< V. soglia
		R1310RL3	Scadente	Scadente	Scadente	115	4	5	IV	4	< V. soglia
		R1311MR1	Scadente	Scadente	Scadente	110	4	6	III	4	< V. soglia
l		R1311MR2A	Sufficiente	Sufficiente	Sufficiente	130	3	7	III	3	< V. soglia
Moro	Moro	R1311MR3A	Scadente	Scadente	Scadente	80	4	6	III	4	< V. soglia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

104

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Fiume	Codice stazione	SACA 2007 ²⁹	SACA 2008 ³⁰	SACA 2009 ³¹	LIM 2009		IBE 2009		SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
		D4242514A	Contract	C 1 1	C . I . I	Punteggio	Livello	Valore	Classe	Classe	. M P.
Feltrino	Feltrino	R1312FL1A	Scadente	Scadente	Scadente	75	4	5	IV	4	< V. soglia
) (II I	17.11	R1312FL2A	Scadente	Scadente	Scadente	60	4	5	IV	4	< V. soglia
Vallegrande	Vallegrande	R1316VG1B	Scadente	Sufficiente	Sufficiente	120	3	7	III	3	< V. soglia
Riccio	Riccio	R1317RC1A	Pessimo	Scadente	Scadente	80	4	5	IV	4	< V. soglia
		I023SN1A	Buono	Buono	Buono	260	2	10	I	2	< V. soglia
		I023SN1B	Scadente	Scadente	Sufficiente	170	3	6	III	3	< V. soglia
Sangro	Sangro	I023SN1C	Buono	Buono	Buono	320	2	10	I	2	< V. soglia
Sarigio	Sangro	I023SN1	Buono	Buono	Buono	290	2	10	I	2	< V. soglia
		I023SN2	Buono	Buono	Buono	335	2	9	II	2	< V. soglia
		I023SN6	Buono	Buono	Buono	270	2	9	II	2	< V. soglia
	Sangro	I023SN10B	Buono	Buono	Buono	240	2	9	II	2	< V. soglia
	A	I023VN5	Buono	Buono	Buono	280	2	10	I	2	< V. soglia
Sangro		I023VN9	Buono	Buono	Buono	300	2	11	I	2	< V. soglia
	Aventino	I023VN10B	Buono	Buono	Sufficiente	230	3	8	II	3	< V. soglia
		I023VN11	Buono	Buono	Sufficiente	190	3	7	III	3	< V. soglia
Osento	Osento	R1313ST2	Scadente	Scadente	Sufficiente	180	3	6	III	3	< V. soglia
Osento	Osento	R1313ST2A	Sufficiente	Scadente	Sufficiente	160	3	6	III	3	< V. soglia
Osento	Osento	R1313ST9	Scadente	Scadente	Scadente	110	4	6	III	4	< V. soglia
		R1314SI1	Buono	Buono	Buono	320	2	9	II	2	< V. soglia
Sinello	Sinello	R1314SI4	Buono	Buono	Buono	240	2	8	II	2	< V. soglia
Siriello	SILIEIIU	R1314SI6A	Sufficiente	Sufficiente	Sufficiente	220	3	6	III	3	< V. soglia
		R1314SI10A	Sufficiente	Sufficiente	Sufficiente	170	3	8	II	3	< V. soglia
Buonanotte	Buonanotte	R1318BN1	Sufficiente	Sufficiente	Sufficiente	160	3	6	III	3	< V. soglia
		I027TG1	Buono	Buono	Sufficiente	170	3	8	II	3	< V. soglia
Trigno	Trigno	I027TG3	Buono	Buono	Sufficiente	210	3	9	II	3	< V. soglia
		I027TG5A	Buono	Sufficiente	Sufficiente	230	3	7	III	3	< V. soglia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Bacino	Fiume	Codice stazione	SACA 2007 ²⁹	SACA 2008 ³⁰	SACA 2009 ³¹	LIM 2009		IBE 2009		SECA 2009	(75° perc. Inq. chimiciTab. 1 D.Lgs 152/99)
						Punteggio	Livello	Valore	Classe	Classe	
		I027TG11	Sufficiente	Sufficiente	Sufficiente	210	3	8	II	3	< V. soglia
	Treste	I027TS16	Buono	Buono	Buono	270	2	8	II	2	< V. soglia
Trigno	treste	I027TS22A	Sufficiente	Sufficiente	Buono	240	2	8	II	2	< V. soglia
	Liri	N005LR1	Buono	Buono	Buono	320	2	9	II	2	< V. soglia
		N005LR6	Sufficiente	Sufficiente	Sufficiente	200	3	7	III	3	< V. soglia
Liri		N005LR9	Sufficiente	Sufficiente	Sufficiente	280	2	7	III	3	< V. soglia
	Ciavanaa	N005GV13	Buono	Buono	Buono	480	1	9	II	2	< V. soglia
	Giovenco	N005GV15	Scadente	Scadente	Sufficiente	195	3	6	III	3	< V. soglia
		N010IM4	Buono	Sufficiente	Buono	240	2	8	II	2	< V. soglia
Toyoro	Imele	N010IM6	Pessimo	Scadente	Scadente	105	4	5	IV	4	< V. soglia
Tevere		N010IM11	Scadente	Scadente	Scadente	110	4	8	II	4	< V. soglia
	Turano	N010TU2	Buono	Buono	Buono	360	2	10	I	2	< V. soglia

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.3.8 Considerazioni sui singoli bacini fluviali

I principali risultati ottenuti, riferiti all'ultimo anno di monitoraggio (anno 2009), sullo stato di qualità ambientale dei corsi d'acqua sono sinteticamente discussi di seguito sulla base della loro suddivisione territoriale in singoli bacini fluviali (vedi Tavola 4-3).

In particolare è possibile segnalare che:

- in generale, si rileva uno scadimento della qualità ambientale delle acque andando da monte verso valle, con una qualità tra "elevato" e "buono" nella parte alta dei corsi d'acqua ed una qualità tra "sufficiente", "scadente" e, in alcuni casi, "pessima" man mano che si prosegue verso la foce.
- alcuni corsi d'acqua o tratti di essi, quindi, sono caratterizzati da situazioni di emergenza ambientale:
 - Fiume Vibrata: è caratterizzato, da S. Egidio alla Vibrata fino alla foce, da una qualità tra "pessima" e "scadente".
 - Fiume Tordino: nell'ultimo tratto è caratterizzato da una qualità "scadente".
 - Fiume Cerrano: alla foce è caratterizzato da una qualità "scadente".
 - Fiume Piomba: quasi lungo tutto il suo corso è caratterizzato da una qualità "scadente".
 - Fiume Tavo: la stazione a valle di Penne è caratterizzata da una qualità "scadente".
 - Fiume Saline: in prossimità della foce è caratterizzato da una qualità "pessima".
 - Fiume Aterno: nell'area della piana aquilana, sul T. Raio ed in corrispondenza di L'Aquila, è caratterizzato da una qualità "scadente".
 - Fiume Pescara: in prossimità della foce è caratterizzato da una qualità "scadente".
 - Fiume Alento, F.so Arielli, F.so Riccio, T. Moro: in prossimità della foce sono caratterizzati da una qualità "scadente".
 - Torrente Feltrino: lungo tutto il suo corso è caratterizzato da una qualità "scadente".
 - Fiume Osento: in prossimità della foce è caratterizzato da una qualità "scadente".
 - Fiume Imele: nel tratto abruzzese, a partire dall'abitato di Tagliacozzo, è caratterizzato da una qualità "scadente".

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Fra le principali cause delle su elencate criticità è possibile evidenziare:

- l'elevato carico antropico a cui sono sottoposte le aree di piana, soprattutto quelle costiere;
- la scarsità di portata dei corsi d'acqua (riscontrata soprattutto in determinati periodi dell'anno) che può quindi determinare un aumento della concentrazione del carico inquinante introdotto; ciò accade soprattutto per quei corsi d'acqua caratterizzati da un bacino imbrifero di dimensioni abbastanza limitate, in cui le rocce in affioramento sono per lo più poco permeabili (quindi con dilavamenti superficiali intensi) e/o non alimentati da importanti risorse idriche sotterranee che potrebbero permettere una maggiore diluizione degli inquinanti (come esempio si rimanda ai corsi d'acqua: Cerrano, Piomba, Alento, Arielli, Riccio, Moro, Feltrino, Osento).
- l'immissione di scarichi (spesso anche quelli depurati, in quanto gli stessi impianti di depurazione risultano malfunzionanti o sottodimensionati);
- secondo l'ARTA, le captazioni, soprattutto nella Provincia di Teramo, e le frequenti variazioni di portata indotte dalla irregolare reimmissione in alveo di volumi considerevoli e ad elevata velocità, che determinano una situazione di stress per tutto l'ecosistema. Tale situazione è evidenziata dalla impedita o rallentata ricolonizzazione dei macroinvertebrati bentonici segnalata spesso dalle classificazioni effettuate attraverso l'indice I.B.E..

E' importante sottolineare che gli equilibri risultano molto delicati per cui, in realtà, per motivi cautelativi (tenuto conto anche del fatto che si tratta di un monitoraggio a grande scala), i tratti di corsi d'acqua caratterizzati da criticità potrebbero essere più estesi di quanto risulta.

E' pure da sottolineare che molti dei punti monitorati presentano uno stato "sufficiente" che dovrà tendere, così come indicato dalla legge, verso uno stato di qualità "buono".

Pertanto i risultati fin qui ottenuti andranno verificati con il proseguimento del monitoraggio, oltre che con l'avvio di indagini specifiche e di maggiore dettaglio, focalizzate soprattutto alla soluzione delle problematiche già evidenziate.

Per approfondimenti relativi al monitoraggio e alla classificazione dei corsi d'acqua superficiali è possibile far riferimento agli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede Monografiche dei Corsi d'acqua Superficiali"**.

5.1.4 Monitoraggio e classificazione dei laghi

Il monitoraggio e la classificazione dei laghi naturali e artificiali significativi (Cfr. par. 1.1.3 e 1.1.6) sono stati realizzati ai sensi del D.Lgs. 152/99, così come già indicato in precedenza.

Le attività di monitoraggio sono state suddivise in:

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- una fase conoscitiva della durata di 24 mesi (2000-2002);
- una fase "a regime" (iniziata nel 2003 e terminata nel 2009)

Il monitoraggio svolto nella *fase conoscitiva* ha permesso una prima classificazione dello stato di qualità ambientale dei laghi.

Per questa fase le attività di monitoraggio e di classificiazione delle acque sono state condotte dall'ATI (Associazione Temporanea di Imprese) Ecogest Sas di Teramo e Bioprogramm - Società Cooperativa di Padova, alla quale sono state affidate con Delibera di Giunta Regionale n. 1480 del 15/06/98.

Tale lavoro di indagine e classificazione delle acque superficiali (in attuazione del D.Lgs. 152/99, come modificato ed integrato dal D.Lgs. 258/2000) è stato svolto nell'ambito dell'attuazione del Piano Triennale per la Tutela dell'Ambiente (P.T.T.A 1994-1996) - Scheda 44 del Ministero dell'Ambiente.

Per ciò che concerne la *fase* "a *regime"*, le attività di monitoraggio e classificazione per il controllo delle acque superficiali sono state affidate all'ARTA con la Convenzione del 20/03/2003 tra la Regione Abruzzo e la stessa Agenzia.

Nei seguenti paragrafi sono descritte le modalità di esecuzione del monitoraggio e di classificazione delle acque e sono riportati i risultati ottenuti dall'analisi dei dati raccolti nella fase conoscitiva e nella fase a regime fino al 2009.

Nell'**Appendice 1** al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo", redatta da Arta Abruzzo al fine di dare seguito alle previsioni della Convenzione appositamente stipulata con la Regione Abruzzo, vengono descritti in dettaglio risultati delle attività di monitoraggio svolte nel 2009, confrontati con quelli degli anni precedenti e viene fornito un giudizio di qualità dei laghi regionali.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.4.1 Indicatori di qualità

D.Lgs. 152/99 - Allegato 1

3.3 Laghi

3.3.1 Indicatori di qualità e analisi da effettuare

La definizione dello stato di qualità ambientale dei laghi è basata sulle analisi effettuate sulla matrice acquosa. Qualora ne ricorra la necessità, come di seguito specificato, tali analisi vanno integrate con determinazioni sui sedimenti e sul biota ovvero da saggi biologici a medio e lungo termine.

3.3.1.1 Acque

Le determinazioni sulla matrice acquosa riguardano due gruppi di parametri, quelli di base e quelli addizionali. I parametri di base sono riportati in tabella 10. Alcuni di questi sono relativi allo stato trofico e sono utilizzati

per la classificazione, altri servono a fornire informazioni di supporto per l'interpretazione dei fenomeni di alterazione. La determinazione dei parametri di base è obbligatoria.

I parametri addizionali sono relativi ai microinquinanti organici ed inorganici; quelli di più ampio significato ambientale sono riportati nella tabella 1 *(Cfr. par. 5.1.1)*.

La selezione dei parametri da esaminare è effettuata dall'autorità competente caso per caso in relazione alle criticità conseguenti agli usi del territorio.

Le analisi dei parametri addizionali ove l'Autorità competente lo ritenga necessario e comunque nel caso in cui:

- a seguito delle attività delle indagini conoscitive di cui all'allegato 3 si individuino sorgenti puntuali e diffuse o si abbiano informazioni pregresse e attuali su sorgenti puntuali e diffuse che apportino una o più specie di tali inquinanti nel corpo idrico;
- dati recenti dimostrino livelli contaminazione, da parte di tali sostanze, delle acque e del biota o segni di incremento delle stesse nei sedimenti.

Tabella 10 - Parametri chimico-fisici di base - con (o) sono indicati i parametri macrodescrittori utilizzati per la classificazione

Temperatura (°C)	рН
Alcalinità (mg/L Ca(HCO ₃) ₂)	Trasparenza (m)(o)
Ossigeno disciolto (mg/L)	Ossigeno ipolimnico (%di saturazione)(o)
Clorofilla "a" (µg/L)(o)	Fosforo totale (P μg/L)(o)
Ortofosfato (P µg/L)	Azoto nitroso (N μg/L)
Azoto nitrico (N mg/L)	Azoto ammoniacale (N mg/L)
Conducibilità Elettrica Specifica (µS/cm (20°C)	Azoto totale (N mg/L)

Per la definizione dello stato di qualità dei laghi significativi, per ciascuna delle stazioni di monitoraggio, si è provveduto alla determinazione della *qualità chimico-fisica* delle acque; ciò è avvenuto sulla base dei:

- parametri macrodescrittori di base come indicato in Tabella 10 dell'Allegato 1 al D.Lgs. 152/99;
- parametri addizionali quali microinquinanti organici ed inorganici come indicato in Tabella 1 dell'Allegato 1 al D.Lgs. 152/99 (Cfr. par. 5.1.1).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.4.2 Stazioni di prelievo

D.Lgs. 152/99 - Allegato 1

3.3.2 Campionamento

3.3.2.1 Criteri per la scelta delle stazioni di prelievo

Corpi d'acqua di superficie inferiore a 80 km²: un'unica stazione fissata nel punto di massima profondità.

I campioni di acqua vanno prelevati lungo la colonna, con le seguenti modalità:

- i laghi con profondità fino a 5 metri: un campione in superficie ed uno sul fondo;
- i laghi con profondità fino ai 50 m: un campione in superficie, uno a metà della colonna d'acqua ed uno sul fondo;

La misura della clorofilla va eseguita su campioni d'acqua prelevati nella sola zona fotica.

Secondo quanto riportato nel D.Lgs. 152/99:

- sono state individuate n. 6 stazioni di monitoraggio una per ogni lago (Tabella
 5.4) localizzate in corrispondenza del punto di massima profondità.
- per ciascuna delle stazioni, posta approssimativamente al centro del lago, sono stati effettuati n. 3 campionamenti lungo la colonna d'acqua, rispettivamente sul fondo, a metà della colonna d'acqua e in superficie.

Tabella 5.4 - Stazioni di monitoraggio della qualità delle acque dei laghi significativi

Lago	Corso d'acqua	Bacino imbrifero	Stazione	Tipo	Superficie (Km²)	Profondità massima (m)
Campotosto	potosto F. Vomano F. Vom		13CP	Artificiale	11,9	19
Penne	Penne F. Tavo F		13PE	Artificiale	1,44	14
Scanno	Scanno T. Tasso F		13S	Naturale	0,82	36,5
Barrea	F. Sangro	F. Sangro	13BA	Artificiale	1,49	12,5
Bomba	F. Sangro	F. Sangro	13BO Artificiale		3,16	35,6
Casoli - S. Angelo	F. Aventino	F. Sangro	13CS	Artificiale	1,15	14

L'ubicazione delle stazioni di prelievo della rete di monitoraggio è riportata nell'elaborato cartografico "Carta della Rete di Monitoraggio quali-quantitativo delle Acque Superficiali (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-1.

5.1.4.3 Frequenza di campionamento

D.Lgs. 152/99 - Allegato 1

3.3.2.2 Frequenza dei campionamenti

I campionamenti devono essere effettuati semestralmente, una volta nel periodo di massimo rimescolamento ed una in quello di massima stratificazione.

La frequenza di campionamento è semestrale, così come indicato dal D.Lgs. 152/99, ed è stata effettuata rispettivamente nel periodo di massimo rimescolamento e di massima stratificazione delle acque.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

5.1.4.4 Determinazione dello Stato Ecologico

D.Lgs. 152/99 - Allegato 1

3.3.3 Classificazione

Al fine di una prima classificazione dello stato ecologico dei laghi viene valutato lo stato trofico così come indicato in tabella 11. La classe da attribuire è quella che emerge dal risultato peggiore tra i quattro parametri indicati.

Tabella 11 - Stato ecologico dei laghi

PARAMETRO	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
Trasparenza (m) (valore minimo)	> 5	≤ 5	≤ 2	≤ 1,5	≤ 1
Ossigeno ipolimnico (% di saturazione) (valore minimo misurato nel periodo di massima stratificazione)	> 80%	≤ 80%	≤ 60%	≤ 40%	≤ 20%
Clorofilla "a" (µg/l) (valore massimo)	< 3	≤ 6	≤10	≤ 25	> 25
Fosforo totale (P µg/I) (valore massimo)	< 10	≤ 25	≤ 50	≤ 100	> 100

La Tabella 11 è stata modificata dal seguente Decreto.

Decreto 29 Dicembre 2003 n. 391 - Allegato A

3.3.3. Classificazione

Al fine di una prima classificazione dello stato ecologico dei laghi viene valutato lo stato trofico utilizzando la tabella 11a per l'individuazione del livello da attribuire alla trasparenza e alla clorofilla "a". L'attribuzione del livello per l'ossigeno disciolto e il fosforo totale viene effettuata rispettivamente attraverso le tabelle a doppia entrata 11b e 11c. Lo stato ecologico e' ottenuto sommando i livelli dei singoli parametri, deducendo la classe finale dagli intervalli definiti dalla tabella 11d.

Tabella 11a - Individuazione dei livelli per la trasparenza e la clorofilla.

PARAMETRO	LIVELLO	LIVELLO	LIVELLO	LIVELLO	LIVELLO
PARAMILIKO	1	2	3	4	5
Trasparenza (m) (valore minimo)	> 5	≤ 5	≤ 2	≤ 1,5	≤ 1
Clorofilla a ((micro)g/l) valore massi o	< 3	≤ 6	≤ 10	≤ 25	> 25

Tabella 11b - Individuazione del livello per l'ossigeno (% saturazione)

zena 112 Individuatione dei meno per receigene (ve satarazione)											
	VALOF	VALORE A 0 m NEL PERIODO DI MASSIMA CIRCOLAZIONE									
		> 80 < 80 < 60 < 40 < 20									
VALORE MINIMO	> 80	1									
IPOLIMNICO NEL	≤ 80	2									
PERIODO DI	≤ 60	2	3	3							
MASSIMA	≤ 40	3	3	4	4						
STRATIFICAZIONE	RATIFICAZIONE ≤ 20 3 4 4 5										

Tabella 11c - Individuazione del livello per il fosforo totale ((micro)g/1)

					1	-,					
	VAI	PERIODO DI MASSIMA									
CIRCOLAZIONE											
< 0 < 25 < 50 < 100											
	< 10	1									
VALORE	≤ 25		2								
MASSIMO	≤ 50	2	3	3							
RISCONTRATO	≤ 100	3	3	4	4						
	100	3	4	4	5	5					

Tabella 11d - Attribuzione della classe dello stato ecologico attraverso la normalizzazione dei livelli ottenuti per i singoli parametri.

Somma dei singoli punteggi	Classe
4	1
5-8	2
9-12	
13-1	4
17-20	5

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La classificazione dello **Stato Ecologico dei Laghi (S.E.L.)** è stata effettuata sulla base della Tabella 11 dell'Allegato 1 del D.Lgs. 152/99, modificata dal Decreto del Ministero dell'Ambiente n. 391 del 29 dicembre 2003.

5.1.4.5 Determinazione dello Stato Chimico

D.Lgs. 152/99 - Allegato 1

3.3.3 Classificazione

Per la valutazione dei parametri relativi agli inquinanti chimici di cui alla tabella 1 si considera la media aritmetica dei dati disponibili nel periodo di misura.

Per la determinazione dello stato chimico delle acque, definito dalla presenza delle sostanze chimiche pericolose elencate nella Tabella 1 del D.Lgs. 152/99 (Cfr. par. 5.1.1), sono state utilizzate, come riferimento, le linee guida e le schede estrapolate dalla pubblicazione del CTN_AIM (Centro Tematico Nazionale - Acque Interne e Marino Costiere) sui "*Criteri di selezione dei parametri addizionall*" (AIM_T_LGU_00_02), desunti dalle principali normative europee e da autorevoli organismi internazionali (Cfr. par. 5.1.3.5).

5.1.4.6 Attribuzione dello Stato Ambientale

D.Lgs. 152/99 - Allegato 1

3.3.3 Classificazione

Al fine della attribuzione dello stato ambientale, i dati relativi allo stato ecologico andranno confermati dagli eventuali dati relativi alla presenza degli inquinanti chimici della tabella 1 secondo quanto indicato nello schema riportato in Tabella 12.

Tabella 12 - Stato ambientale dei laghi

STATO ECOLOGICO Concentrazione di inquinanti di cui alla tabella 1	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
≤ Valore Soglia	ELEVATO	BUONO	SUFFICIENTE	CADENTE	ESSIMO
> Valore Soglia	SCADENTE	SCADENTE	SCADENTE	SCADENTE	PESSIMO

La classificazione dello *Stato Ambientale dei Laghi (S.A.L.)* è stata effettuata sulla base delle indicazioni riportate nel D.Lgs. 152/99 e, nello specifico, nella Tabella 12 dell'Allegato 1 al suddetto Decreto.

5.1.4.7 Risultati

Durante tutto il periodo 2000-2006, si assiste ad un miglioramento dello stato di qualità ecologica (S.E.L.) e ambientale (S.A.L.) dei laghi di Barrea e Bomba a partire dal primo anno di monitoraggio a regime (**Tabella 5.5**), mentre tutti gli altri subiscono, in generale, uno scadimento di qualità. Particolari criticità sono state evidenziate per i laghi di Penne e Scanno nel III anno di monitoraggio a regime.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Nella **Tabella 5.5 bis** vengono inoltre riportati i risultati relativi al monitoraggio effettuato nel 2009 confrontati con i risultati ottenuti nel 2007 e nel 2008.

Tabella 5.5 – Sintesi dei risultati del monitoraggio effettuato nella fase conoscitiva e "a regime"

		Fa	Fase conoscitiva			Monitoraggio "a regime"								
Lago	Bacino	2000-2002 (¹)			I an	I anno: 2003-2004 (²)			no: 2004-	2005 (³)	III anno: 2006 (4)			
5	imbrifero	S.E.L.	Stato chimico	S.A.L.	S.E.L.	Stato chimico	S.A.L.	S.E.L.	Stato chimico	S.A.L.	S.E.L.	Stato chimico	S.A.L.	
Lago di Campotosto	F. Vomano	Classe 4	< v.s.	scadente	Classe 3	< v.s.	sufficiente	Classe 2	< v.s.	buono	Classe 3	< v.s.	sufficiente	
Lago di Penne	F. Saline	Classe 5	> v.s. (*)	pessimo	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	Classe 4	< v.s.	scadente	
Lago di Scanno	F. Pescara	Classe 5	< v.s.	pessimo	Classe 4	< v.s.	scadente	Classe 3	< v.s.	sufficiente	Classe 4	< v.s.	scadente	
Lago di Barrea	F. Sangro	Classe 4	< v.s.	scadente	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	
Lago di Bomba	F. Sangro	Classe 4	< v.s.	scadente	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	
Lago di Casoli-S. Angelo	F. Sangro	Classe 3	< v.s.	sufficiente	Classe 2	≤ v.s.	buono	Classe 3	< v.s.	sufficiente	Classe 3	< v.s.	sufficiente	

- (¹) Fonte: "Il monitoraggio e la prima classificazione delle acque ai sensi del D.lgs. 152/99", 2003, Bioprogramm Ecogest, Regione Abruzzo;
- (²) Fonte: "Monitoraggio dei corsi d'acqua della Regione Abuzzo D.L.vo 152/99 I° anno fase a regime (maggio 2003 aprile 2004)", ARTA Abruzzo;
- (³) Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, II° anno di monitoraggio a regime maggio 2004 aprile 2005", Regione Abruzzo ARTA;
- (4) Fonte: "Qualità delle Acque Superficiali nella Regione Abruzzo, IIIº anno di monitoraggio a regime gennaio 2006 dicembre 2006", Regione Abruzzo - ARTA Abruzzo;
- (*) L'inquinante chimico Dieldrin ha superato il valore soglia fissato a 0,01 μg/l con una concentrazione pari a 0,013 μg/l.

Tabella 5.5 bis - Sintesi dei risultati del monitoraggio effettuato nel 2007, nel 2008 e nel 2009"

	2007			2008			2009			
Lago	S.E.L.	Stato chimico	S.A.L.	S.E.L.	Stato Chimico	S.A.L.	S.E.L.	Stato chimico	S.A.L.	
Scanno	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	
Barrea	3	< v.s.	Sufficiente	4	< v.s.	Scadente	3	< v.s.	Sufficiente	
Campotosto	2	< v.s.	buono	4	< v.s.	Scadente	3	< v.s.	Sufficiente	
Penne	n.c	< v.s.	n.c.	4	< v.s.	Scadente	3	< v.s.	Sufficiente	
Bomba	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	
Casoli	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	3	< v.s.	Sufficiente	

Nell'**Appendice 1** al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo", redatta da Arta Abruzzo al fine di dare seguito alle previsioni della Convenzione appositamente stipulata con la Regione Abruzzo, vengono descritti i risultati delle attività di monitoraggio svolte nel 2009, e viene fornito un giudizio di qualità dei laghi regionali.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Lo stato ecologico dei laghi relativo al 2009 è riportato nell'elaborato cartografico **"Carta dello Stato Ecologico dei Corsi d'acqua Superficiali e dei Laghi (Monitoraggio 2009)",** in scala 1:250.000, Tavola 4-2.

Lo stato ambientale dei laghi relativo al 2009 è riportato nell'elaborato cartografico **"Carta dello Stato Ambientale dei Corsi d'acqua Superficiali, dei Laghi e dei Canali artificiali (Monitoraggio 2009)"**, in scala 1:250.000, Tavola 4-3.

5.1.4.8 Valutazione della Trofia

Al fine di disporre di ulteriori elementi sullo stato di qualità dei laghi abruzzesi è stata eseguita anche la valutazione della trofia per i sei bacini lacustri in esame.

Il livello di trofia di un lago è ricavabile dalla traduzione di alcuni parametri guida, statisticamente correlabili tra di loro, in Indici di Stato Trofico (TSI), in grado di descrivere in forma numerica aggregata la situazione trofica del corpo d'acqua in esame. I TSI sono stati calcolati in base alle indicazioni di Carlsson (1977) e si riferiscono alle elaborazioni normalizzate dei valori di clorofilla (chl_a), Disco Secchi (trasparenza, sd) e Fosforo totale (tp). Tali suggerimenti sono stati successivamente modificati ed adattati alla realtà dei laghi italiani dall'Istituto di Idrobiologia di Pallanza (De Bernardi et alii, 1984), che ha sintetizzato in un unico indice di stato trofico, TSI*, il risultato della somma dei tre precedenti.

Ogni TSI singolo si ottiene dalla seguente relazione:

$$TSI(chl_a) = 10*[6-(1,66-1.43ln(chl_a)/ln 2]$$

$$TSI(sd) = 10*(6-log_2 (sd))$$

$$TSI(tp) = 10*[6-(ln (60,3/P/ln 2)]$$

Il livello di trofia complessivo TSI* è tradotto in termini di giudizio così come riportato nella **Tabella 5.6**.

Tabella 5.6 - Giudizio sul livello di trofia di un lago in base al TSI*

Valori di trofia	Oligotrofia	Mesotrofia	Eutrofia	Ipertrofia
TSI*	< 135	135 - 190	190 - 240	> 240

I risultati delle rilevazioni effettuate sullo **stato di trofia** dei laghi nella fase conoscitiva e a regime, fino al 2006 sono riportati nella **Tabella 5.7**. In **Tabella 5.7 bis** vengono riportati i risulatti sullo stato di trofia relativi agli anni 2007 -2008-2009. Tali rilevazioni sono state effettuate nei periodi di massima stratificazione e massima fioritura.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.7 – TSI* - Risultati ottenuti dal monitoraggio effettuato durante la fase conoscitiva e nel I, II e III anno di monitoraggio "a regime"

Lago	Bacino imbrifero	Fase con	oscitiva	I anno a regime	II anno a regime	III anno a regime
	illibrileio	2001	2002	2003-2004	2004-2005	2006
Campotosto	F. Vomano	Mesotrofia	Eutrofia	Mesotrofia	Mesotrofia	Mesotrofia
Penne	F. Saline	Eutrofia	Eutrofia	Eutrofia	Mesotrofia	Eutrofia
Scanno	F. Pescara	Mesotrofia	Mesotrofia	Mesotrofia	Mesotrofia	Oligotrofia
Barrea	F. Sangro	Mesotrofia	Eutrofia	Mesotrofia	Eutrofia	Mesotrofia
Bomba	F. Sangro	Mesotrofia	Mesotrofia	Mesotrofia	Mesotrofia	Mesotrofia
Casoli – S.Angelo	F. Sangro	Eutrofia	Eutrofia	Mesotrofia	Mesotrofia	Mesotrofia

Il trend dell'andamento dei livelli di trofia nel periodo di campionamento 2001-2006 evidenzia complessivamente un miglioramento dello stato di qualità dei laghi della Regione Abruzzo.

Tabella 5.7 bis : TSI* - Risultati ottenuti dal monitoraggio effettuato dal 2007 al 2009

Lago	livello trofico estate 2007	livello trofico estate 2008	livello trofico estate 2009
Scanno	mesotrofia	mesotrofia	mesotrofia
Barrea	mesotrofia	mesotrofia	mesotrofia
Campotosto	mesotrofia	mesotrofia	mesotrofia
Penne	non classificato	eutrofia	mesotrofia
Bomba	mesotrofia	mesotrofia	mesotrofia
Casoli	mesotrofia	mesotrofia	mesotrofia

Per approfondimenti relativi al monitoraggio e alla classificazione dei laghi si rimanda agli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede Monografiche dei Corsi d'Acqua Superficiali**" e Appendice 1 al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo",

5.1.5 Monitoraggio e classificazione dei canali artificiali

Il monitoraggio e la classificazione delle acque dei canali artificiali significativi e di interesse (Cfr. par. 1.1.6) sono stati realizzati ai sensi del D.Lgs. 152/99, così come già indicato in precedenza. L'attività di monitoraggio delle acque ha avuto inizio nell'anno 2004 ed è stata affidata all'ARTA con la Convenzione del 20/03/2003 tra la Regione Abruzzo e la stessa Agenzia.

Nei seguenti paragrafi sono state descritte le modalità di esecuzione del monitoraggio ed i principali risultati ottenuti dall'analisi dei dati raccolti nel biennio 2008-2009 che hanno permesso una prima classificazione dello stato di qualità ambientale delle acque.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.5.1 Indicatori di qualità

D.Lgs. 152/99 - Allegato 1

3.6 Corpi idrici artificiali

Ai corpi idrici artificiali si applicano gli stessi elementi di qualità e gli stessi criteri di misura applicati ai corpi idrici superficiali naturali che più si accostano al corpo idrico artificiale in questione.

. . . **.**

Gli indicatori di qualità ed i rispettivi criteri di misura per le acque dei canali artificiali sono quelli utilizzati per le acque dei corsi d'acqua superficiali relativamente alla sola matrice acquosa.

5.1.5.2 Stazioni di prelievo

D.Lgs. 152/99 - Allegato 1

3.6 Corpi idrici artificiali

....

Il numero e la localizzazione dei punti di campionamento, nonché la frequenza delle misure sono definiti a cura delle Regioni e delle province autonome, tenendo conto della rilevanza del corpo idrico in questione rispetto al reticolo idrografico locale.

....

Per ciascun canale artificiale, sia esso significativo che di interesse, è stato fissato un unico punto di prelievo delle acque (**Figura 5.1**).

L'ubicazione delle stazioni di prelievo delle acque dei canali artificiali è riportata nell'elaborato cartografico "Carta della Rete di Monitoraggio quali-quantitativo delle Acque Superficiali (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-1.

5.1.5.3 Frequenza di campionamento

D.Lgs. 152/99 - Allegato 1

3.6 Corpi idrici artificiali

...

Il numero e la localizzazione dei punti di campionamento, nonché la frequenza delle misure sono definiti a cura delle Regioni e delle province autonome, tenendo conto della rilevanza del corpo idrico in questione rispetto al reticolo idrografico locale.

...

La frequenza di campionamento delle acque dei canali artificiali è stata fissata in misure a cadenza semestrale.

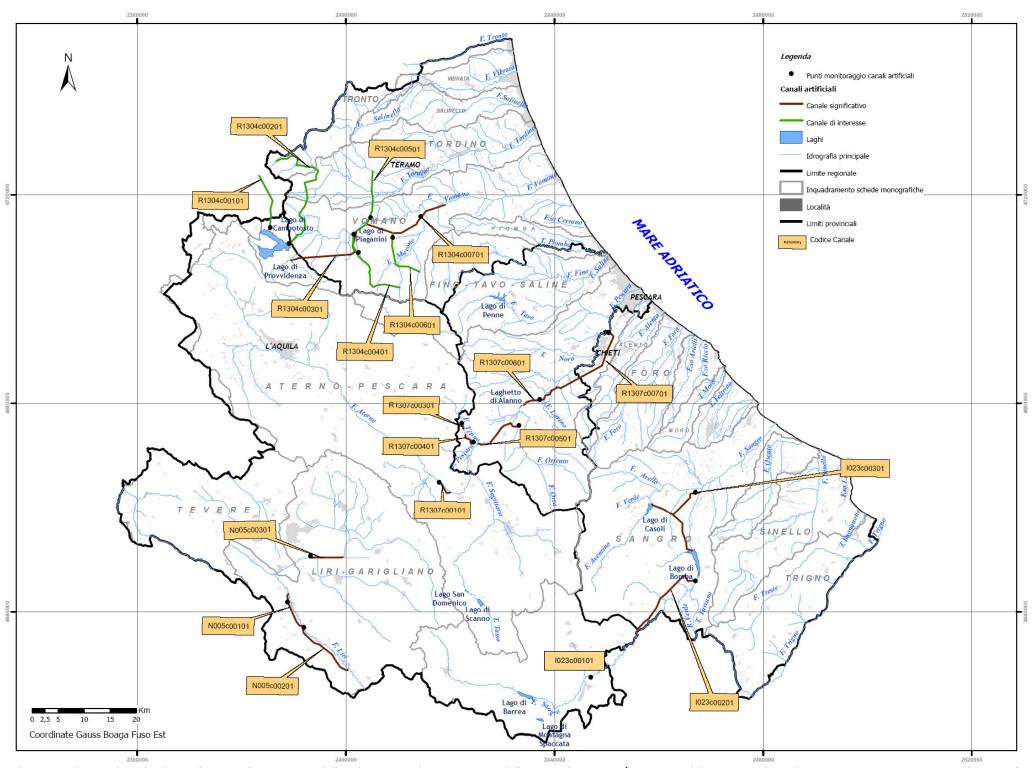


Figura 5.1: Ubicazione dei canali artificiali significativi e di interesse e della relativa rete di monitoraggio delle acque (N.B.: non è stato possibile riportare il canale I023c00101 in quanto non si hanno informazioni circa l'ubicazione dello stesso; viene comunque indicato il punto di monitoraggio).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.5.4 Classificazione

D.Lgs. 152/99 - Allegato 1

3.6 Corpi idrici artificiali

....

Gli obiettivi ambientali fissati per questi corpi idrici devono garantire il rispetto degli obiettivi fissati per i corpi idrici superficiali naturali ad essi connessi. Per quanto riguarda lo stato ecologico, tendenzialmente, devono avere un livello qualitativo corrispondente almeno a quello immediatamente più basso di quello individuato per gli analoghi corpi idrici naturali

Per quanto riguarda lo stato chimico non devono comunque essere superate le soglie indicate per le sostanze pericolose prioritarie nella precedente tabella 1 *(Cfr. par. 5.1.1)*.

Nel caso di canali artificiali la classificazione va eseguita solo sulla base dei parametri riportati nella tabella 7 e del risultato del punteggio ottenuto dai macrodescrittori secondo quanto indicato in tabella 8 *(Cfr. 5.1.3.4)*.

La classificazione dello stato di qualità ambientale delle acque dei canali artificiali è stata effettuata secondo quanto indicato nel D.Lgs. 152/99 e quindi solo in funzione del Livello di Inquinamento espresso dai Macrodescrittori (L.I.M.).

Per la valutazione del L.I.M. si è fatto riferimento a "Procedure di calcolo dello stato ecologico dei corsi d'acqua e di rappresentazione grafica delle informazioni" (*R. Spaggiari e S. Franceschini - Biologia Ambientale, 14 (2): 1- 6, 2000*). Nel caso di misure con v

alori inferiori al limite di rilevabilità della metodica adottata, per il calcolo del 75° percentile, convenzionalmente è stato utilizzato come valore la metà del limite di rilevabilità stesso.

5.1.5.5 Risultati

L'attività di monitoraggio delle acque ha avuto inizio nell'anno 2004, sulla base dei risultati ottenuti è stata effettuata la classificazione dello stato di qualità ambientale delle acque dei canali artificiali. Essa è stata realizzata mediante l'elaborazione dei dati relativi ai parametri macrodescrittori delle acque, così come indicato nel paragrafo 5.1.3.4. E' stato calcolato il punteggio totale relativo al Livello di Inquinamento da Macrodescrittori (L.I.M.) che ha permesso di attribuire alle acque di ciascun canale la classe L.I.M., in modo da poter poi definire lo stato di qualità ambientale delle stesse. I risultati della classificazione ottenuti slla base dei monitoraggi effettuati nel biennio 2004-2005 sono sintetizzati nella **Tabella 5.8** e nella **Figura 5.2**, i risultati ottenuti negli anni 2008 e 2009 sono sintetizzati nella **Tabella 5.8 bis.**

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.8 - Sintesi dei risultati ottenuti dal monitoraggio effettuato nel biennio 2004-2005

Denominazione canale	Codice stazione	Bacino idrografic o	Punteggio LIM	Classe LIM	Stato di qualità ambientale (i) (*)
Canale Occidentale della Laga a quota 1350 m.	R1304c00101	Vomano	280	2	Buono
Canale Orientale della Laga a quota 1350 m.	R1304c00201	Vomano	290	2	Buono
Canale Enel a San Giacomo (2º salto)	R1304c00301	Vomano	340	2	Buono
Canale Ruzzo Mavone a quota 1100 m.	R1304c00401	Vomano	290	2	Buono
Canale sinistro a quota 400 m. (Fiumicello-Tordino- Vezzola)	R1304c00501	Vomano	275	2	Buono
Canale destro a quota 400 m. (Leomogna-Chiarino-Ruzzo-Mavone)	R1304c00601	Vomano	210	3	Sufficiente
Canale Enel a Montorio	R1304c00701	Vomano	270	2	Buono
Canale Enel alla Centrale di Molina Aterno	R1307c00101	Aterno- Pescara	160	3	Sufficiente
Canale "Nuovo Azzurro" sul Fiume Tirino	R1307c00301	Aterno- Pescara	340	2	Buono
Canale Soc. Ausimont	R1307c00401	Aterno- Pescara	300	2	Buono
Canale Enel a Bolognano	R1307c00501	Aterno- Pescara	320	2	Buono
Canale Enel ad Alanno	R1307c00601	Aterno- Pescara	310	2	Buono
Canale Enel a Triano	R1307c00701	Aterno- Pescara	320	2	Buono
Canale SIRCI a Castel di	I023c00101	Sangro	380	2	Buono
Canale Enel a Villa Santa	I023c00201	Sangro	320	2	Buono
Canale ACEA alla Centrale	I023c00301	Sangro	440	2	Buono
Canale Enel 2° salto Fiume	N005c00101	Liri	120	3	Sufficiente
Canale Enel 3° salto Fiume	N005c00201	Liri	160	3	Sufficiente
Canale Collettore del Fucino (Loc. Le Paratoie)	N005c00301	Liri	85	4	Scadente

⁽i) Fonte: "Programma di monitoraggio "Acque superficiali" – Monitoraggio dei canali artificiali – biennio 2004-2006", Regione Abruzzo - ARTA Abruzzo;

(*) Lo stato di qualità ambientale è determinato sulla base del LIM.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE SERVIZIO QUALITA' DELLE ACQUE

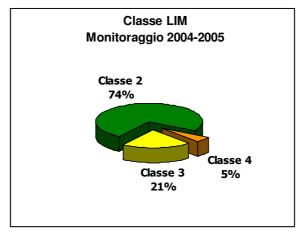


Figura 5.2: Distribuzione percentuale della classe relativa al Livello di Inquinamento da Macrodescrittori (L.I.M.)

Tabella 5.8 bis - Sintesi dei risultati ottenuti dal monitoraggio effettuato nel 2007, 2008 e nel 2009

	Codice	LIM 20	06	LIM 20	07	LIM 2008		LIM 2009	
Denominazione canale	Stazione	punteggio	livello	punteggio	livello	punteggio	livello	punteggio	livello
Canale SIRCI a Castel di Sangro	I023c00101	520	1	380	2	400	2	175	3
Canale Enel a Villa Santa Maria	I023c00201	370	_ 2	480	_ 1	280	_ 2	260	_ 2
Canale ACEA alla Centrale S.Angelo	I023c00301	360	2	500	1	320	2	280	2
Canale Enel 2° salto fiume Liri	N005c00101	140	3	140	3	140	3	260	_ 2
Canale Enel 3° Salto fiume Liri	N005c00201	170	3	190	3	150	3	260	2
Canale Collettore del Fucino (Loc. Le Paratoie)	N005c00301	75	4	70	4	55	5	280	2
Canale Occidentale della Laga a Q 1350	R1304c00101	520	1	520	1	400	2	560	1
Canale Orientale della Laga a Q 1350	R1304c00201	480	1	520	1	430	2	430	2
Canale Enel a San Giacomo (II salto)	R1304c00301	520	1	520	1	480	1	520	1
Canale Ruzzo Mavone a Q 1100	R1304c00401	440	2	560	1	440	2	560	_1_
Canale sinistro a Q 400 (Fiumicello-Tordino-Vezzola)	R1304c00501*	520	1	520	1	520	1	520	_1_
Canale destro a Q 400	R1304c00601	420	2	460	2	450	2	410	2
(Leomogna-Chiarino-Ruzzo-Mavone)	K1304C00001	720		700		730		410	
Canale Enel a Montorio	R1304c00701	440	2	500	1	460	2	270	2
Canale Enel alla Centrale di Molina Aterno	R1307c00101	240	2	220	3	260	2	340	2
Canale "Nuovo Azzurro" sul Fiume Tirino	R1307c00301	380	2	310	2	350	2	280	2
Canale Soc. Ausimont	R1307c00401	360	2	310	2	350	2	340	2
Canale Enel a Bolognano	R1307c00501*	320	2	320	2	310	2	440	2
Canale Enel ad Alanno	R1307c00601	285	2	310	2	310	2	210	3
Canale Enel a Triano	R1307c00701	300	2	280	2	210	3	200	3

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Nell'Appendice 1 al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo", redatta da Arta Abruzzo al fine di dare seguito alle previsioni della Convenzione appositamente stipulata con la Regione Abruzzo, vengono descritti i risultati delle attività di monitoraggio svolte nel 2009, e viene fornito un giudizio di qualità dei canali artificiali regionali.

La classificazione dello stato di qualità delle acque dei canali artificiali relativa al 2009 è riportata nell'elaborato cartografico "Carta dello Stato Ambientale dei Corsi d'acqua Superficiali, dei Laghi e dei Canali artificiali (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-3.

Per approfondimenti relativi al monitoraggio e alla classificazione delle acque dei canali si rimanda agli allegati monografici al PTA, Relazione Generale – Sezione V R1.5 **"Schede Monografiche dei Corsi d'acqua Superficiali"** e nell'Appendice 1 al presente Quadro Conoscitivo "Qualità delle acque superficiali nella Regione Abruzzo",

5.1.6 Monitoraggio e classificazione delle acque marino-costiere

Ai sensi del D.Lgs. 152/06, sono significative le acque marine comprese entro la distanza di 3000 metri dalla costa e comunque entro la batimetria di 50 metri (Cfr. par. 1.1.3 Allegato 1 alla Parte terza del succitato Decreto).

Le attività attuate nell'ambito del monitoraggio delle acque costiere rientrano in quelle individuate nel par. A.1.4 del punto 2 " Modalità per la classificazione dello stato di qualità dei corpi idrici" dell'Allegato 1 alla Parte Terza del succitato Decreto e possono essere così schematizzate:

- rilevazione dei parametri meteo marini
- acquisizione dati fisico-chimici delle acque tramite sonda multiparametrica nella colonna d'acqua
- determinazione della concentrazione dei nutrienti
- analisi del fitoplancton e dello zooplancton
- bioaccumulo e sedimentazione di microinquinati nel biota (*M. galloprovincialis*) e nel sedimento
- test ecotossicologici sui sedimenti
- biomarkers
- analisi granulometrica dei sedimenti
- analisi delle biocenosi di fondo
- ricerca delle microalghe bentoniche tossiche.

Nell'anno 2009 le attività di monitoraggio dell'ambiente marino-costiero sulla Rete Regionale della Regione Abruzzo svolte dall' ARTA Abruzzo con i seguenti obiettivi:

 proseguimento del Programma di monitoraggio dell'ambiente marino-costiero 2008-2009 in convenzione tra Ministero dell'Ambiente e Servizio Opere Marittime della Regione Abruzzo (Legge 979/82)

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

2. classificazione ecologico-ambientale delle acque marine in applicazione del D.lgs 152/06

Il monitoraggio nell'anno 2009 è stato effettuato seguendo le indicazioni contenute in "Metodologie analitiche di riferimento ICRAM" come indicato dal Ministero dell'Ambiente e della Tutela del Territorio - Servizio Difesa Mare. I dati riportati sono contenuti nella "Relazione finale anno 2009 attività monitoraggio marino", realizzata dell'ARTA Abruzzo, Dipartimento Provinciale di Pescara. La valutazione e classificazione dello stato di qualità delle acque costiere è stata effettuata sulla base della valutazione dell'Indice di Trofia ed è stata integrata dal giudizio emergente dalle analisi compiute sui sedimenti e sul biota ai sensi del D.Lgs. 152/99 e 152/06 limitatamente alla loro applicabilità

Qui di seguito vengono riportate le caratteristiche delle attività di monitoraggio ed i risultati del monitoraggio 2009 (*gennaio 2009 – dicembre 2009*) relativamente alla matrice acqua, sedimento e biota.

Nei paragrafi a seguire vengono descritte sinteticamente le caratteristiche del monitoraggio effettuato sulla matrice acqua.

5.1.6.1 Parametri monitorati

D.Lgs. 152/99 - Allegato 1

3.4.1.1 Acque

I parametri da analizzare nelle acque sono quelli di base riportati nella tabella 13; i parametri definiti macrodescrittori ed indicati con (o) nella stessa tabella sono utilizzati per la classificazione di cui alla tabella 17. Gli altri parametri forniscono informazioni di supporto per la interpretazione delle caratteristiche di qualità e vulnerabilità dell'ambiente marino analizzato nonché per la valutazione dei carichi trasportati.

Tabella 13 - Parametri di base (con (o) sono indicati i parametri macrodescrittori utilizzati per la classificazione)

, az ena 25	one marcas i parametri macroaccenteri atmizzati per la ciaccimazione)
Temperatura (°C)	Ossigeno disciolto (mg/L)(o)
pH	Clorofilla "a" (µg/L)(o)
Trasparenza (m)	Azoto totale (μg/L come N)
Salinità (psu)	Azoto nitrico (µg/L come N)(o)
Ortofosfato (µg/L come P)	Azoto ammoniacale (μg/L come N)(o)
Fosforo totale (µg/L come P)(o)	Azoto nitroso (μg/L come N)(o)
Enterococchi (UFC/100 cc)	Analisi quali - quantitativa del fitoplancton (num. cellule/L)

I parametri monitorati per le acque risultano essere quelli indicati nel D.Lgs. 152/99; ad essi sono stati aggiunti: l'analisi qualiquantitativa del mesozooplancton, i microinquinanti (così come previsto dal D.M.56/2008) e la ricerca delle alghe tossiche.

5.1.6.2 Stazioni di prelievo

La rete di monitoraggio delle acque marino-costiere è costituita da un reticolo di otto stazioni per il campionamento delle varie matrici, distribuite su quattro transetti perpendicolari alla costa e poste rispettivamente a 500 m e 3000 m dalla costa (**Tabella 5.89** e **Figura 5.23**); ad esse si aggiungono, in prossimità dei transetti sotto costa, le quattro stazioni di campionamento per le matrici biota e microalghe bentoniche.

In totale la rete di monitoraggio prevede 12 stazioni di campionamento riportate nella seguente tabella:

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

AREA	Distanza dalla costa	Cod. Punto	Lat. Nord	Long. Est	PROFONDITÁ m
GIULIANOVA	200 m	GUL	42°45'09″	13°58'35"	2,1
500 m a Sud molo Sud del	500 m	GU01	42°44'52"	13°58'55"	4,7
porto	3000 m	GU03	42°45'14"	14°00'41"	12,2
	200 m	PES	42°29'10"	14°11'55"	1,9
PESCARA zona antistante Via Cadorna	500 m	PE04	42°29'18"	14°12'06"	5,6
	3000 m	PE06	42°30'04"	14°13'37"	14,4
	200 m	ORT	42°20'03"	14°25'34"	3,3
ORTONA punta Acquabella	500 m	OR07	42°20'16"	14°25'41"	6,9
	3000 m	OR09	42°21'06"	14°27'11"	17,0
	200 m	VAS	42°10'42"	14°41′25"	4,8
VASTO punta Aderci	500 m	VA10	42°11'02"	14°41'09"	7,8
	3000 m	VA12	42°12'08"	14°42'12"	19,8

Tabella 5.89: Elenco delle stazioni di campionamento

D.Lgs. 152/99 - Allegato 1

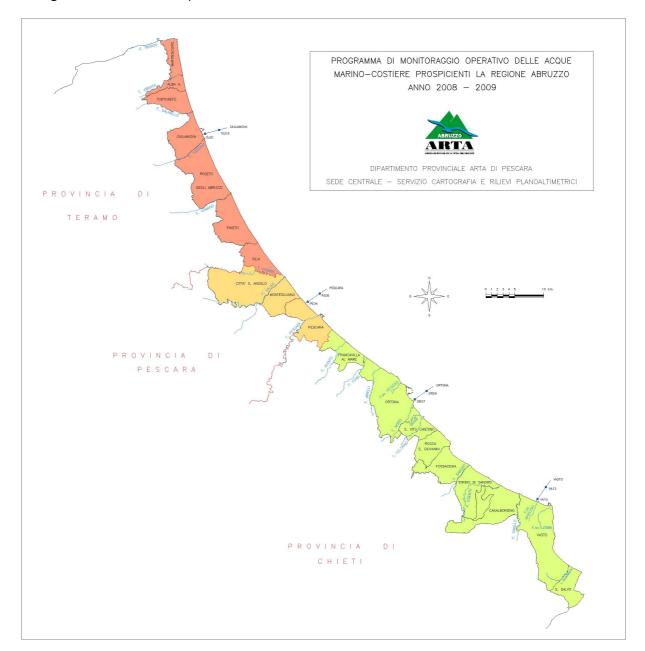
3.4.2 Campionamento

3.4.2.1 Criteri per la scelta delle stazioni di prelievo

Acque

Ai fini del campionamento vengono identificate tre diverse tipologie di fondale, per ciascuna delle quali viene stabilito il posizionamento di tre stazioni di prelievo per transetto; questi vanno sempre posizionati ortogonalmente alla linea di costa

Il posizionamento delle stazioni a fondale basso (a 200 m dalla costa ha una batimetrica inferiore ai 5 m) è fissato come segue:


BASSO FONDALE		
I Stazione	II Stazione	III Stazione
500 m da costa	1000 m da costa	a 3000 m da costa

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Figura 5.3: Stazioni di campionamento

Nelle 4 aree di indagine (Giulianova, Pescara, Ortona e Vasto) è stato eliminato, rispetto ai monitoraggi pregressi (2000-2008) il transetto a 1000 metri sostituendo lo stesso con una stazione di monitoraggio localizzata maggiormente vicino alla riva per poter effettuare anche controlli e valutazioni sulle alghe tossiche(Osteopsis, Fibrocapsa) che generalmente fioriscono in prossimità delle scogliere. Pertanto per ogni area, trattandosi di basso fondale, sono state posizionate n. 3 stazioni di campionamento a 200, 500 e 3000 m dalla costa.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Il campionamento del plancton è stato effettuato nelle stesse stazioni (Giulianova, Pescara, Ortona e Vasto) poste ad una distanza di 500 m dalla riva, in cui sono stati effettuati i campionamenti di acqua.

5.1.6.3 Frequenza di campionamento

La realizzazione del programma di monitoraggio regionale, con indagini su più matrici (acqua, sedimento, biota, plancton, macrobenthos), avviene secondo precisi protocolli operativi. Il programma prevede l'esecuzione di campagne di campionamento e misura, secondo un calendario prestabilito riportato in **Tabella 5.10**.

Matrial	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	ОТТ	NOV	DIC
Matrici	N. CAMPIONI / MESE											
Dati sonda multiparametrica	8	8	8	8	8	8	8	8	8	8	8	8
ACQUA (nutrienti*)	16	16	16	16	16	16	16	16	16	16	16	16
ACQUA(inquinanti)					4	4				4		
FITOPLANCTON	4	4	4	4	4	4	4	4	4	4	4	4
ZOOPLANCTON	4	4	4	4	4	4	4	4	4	4	4	4
SEDIMENTI (**)				24								
BIOTA						4						
MICROALGHE BENTONICHE						8	8	8			·	
MACROBENTHOS				24						24	·	

^(*) Prelevati a 500 m e 3000 m in superficie e in profondità

Tabella 5.10: Calendario di monitoraggio effettuato nel 2009 sulla Rete Regionale

5.1.6.4 Modalità di campionamento

Il campionamento viene effettuato con il mezzo nautico, la motonave "Ermione", che viene utilizzata per tutte le attività effettuate in mare.

Le attività operative di campionamento riguardano l'acquisizione di dati e il prelievo di campioni delle diverse matrici.

In ciascuna stazione sono state effettuate: osservazioni meteo marine (temperatura aria, pressione barometrica, umidità relativa, direzione e velocità del vento, direzione e velocità della corrente, altezza onde, colorazione), rilevazioni fisiche e chimiche (trasparenza, temperatura, salinità, ossigeno disciolto, pH e clorofilla "a") in colonna d'acqua e, per mezzo di sonda multiparametrica, il prelievo di campioni d'acqua su cui successivamente sono state eseguite le

^(**) Prelevati a 500 m in superficie, a 3000 m in superficie e in profondità.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

analisi previste.

La misura della trasparenza è stata determinata mediante Disco di Secchi.

Ogni campagna mensile viene realizzata nei primi giorni del mese ed ha la durata media di 2-3 gg. salvo condizioni meteo-marine avverse; ad eccezione per il prelievo del macrobenthos che prevede tempi più lunghi.

L'acquisizione dei valori delle variabili chimico—fisiche nella colonna d'acqua viene effettuata ad ogni metro di profondità, da 50 cm dalla superficie a 50 cm dal fondo con individuazione del termoclino, se esistente; l'acquisizione dati avviene mediante sonda multiparametrica "Idronaut mod. Ocean Seven 316 plus" che, azionata da un verricello, viene calata sulla verticale a velocità costante. Per i profili verticali della clorofilla "a" si utilizza un fluorimetro della "Sea Teck" abbinato alla sonda multiparametrica.

La funzionalità della sonda è certificata annualmente dalla ditta fornitrice attraverso intercalibrazione con una sonda di riferimento.

I campioni di *acqua* sono prelevati a 50 cm dalla superficie a 50 cm dal fondo con bottiglia Niskin, per l'analisi dei nutrienti (Azoto totale, Fosforo totale e Ortofosfati, Silicati, Azoto Ammoniacale, Azoto Nitroso, Azoto Nitrico); un'aliquota prelevata a 50 cm dalla superficie viene utilizzata per lo studio del *fitoplancton* mediante osservazione al microscopio ottico rovesciato.

I campioni di acqua per le determinazione dei nutrienti solubili sono filtrati sul posto, utilizzando filtri Millipore con porosità di $0,45~\mu m$; i campioni "tal quale" e quelli "filtrati" sono poi trasportati in laboratorio per le successive analisi, in contenitori refrigerati a +4 °C, insieme a tutti gli altri campioni.

Il prelievo di *organismi zooplanctonici* avviene mediante una rete standard WP-2, con vuoto di maglia di 200 μm e munita di flussimetro, su tutta la colonna d'acqua e con pescata obliqua.

Il campionamento di *sedimento marino*, per la caratterizzazione chimico-fisica, chimica e tossicologica, viene effettuato con il box core, con prelievi in superficie e in profondità.

Per il campionamento di *macrozoobenthos* per l'analisi della comunità bentonica si utilizza una benna di Van Veen da 0,1 m²: si effettuano tre repliche per ogni stazione e poi ogni campione di sedimento viene sottoposto a setacciatura mediante un setaccio con maglie di 1 mm; gli organismi separati sono immediatamente fissati in formalina al 10% in acqua di mare e trasportati in laboratorio per la classificazione.

Il prelievo di molluschi, per la componente *biota,* è effettuato dall'operatore subacqueo direttamente sui manufatti della scogliera in prossimità delle stazioni a 500 m dalla costa così

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

come i prelievi di acqua e macroalghe per la ricerca delle microalghe bentoniche tossiche.

5.1.6.5 Analisi

Tutte le attività analitiche vengono eseguite presso i laboratori del Dipartimento Provinciale di Pescara.

In dettaglio le analisi di tipo chimico su matrici acqua (nutrienti disciolti, N e P totali, microinquinanti chimici), sedimento (microinquinanti chimici) e biota (microinquinanti chimici) sono svolte presso il Laboratorio Chimico-Ambientale, mentre le analisi biologiche (fitoplancton e fitoplancton potenzialmente tossico, zooplancton, macrobenthos), tossicologiche (saggi biologici e biomarkers) e granulometriche dei sedimenti sono effettuate presso il Laboratorio di Biologia e Tossicologia Ambientale.

I prelievi e i rilievi sul campo, così come le metodologie analitiche seguite, sono quelle indicate dal Ministero dell'Ambiente e della Tutela del Territorio (ICRAM-ANPA-Ministero dell'Ambiente e della Tutela del Territorio-Servizio Difesa Mare, 2001. *Programma di Monitoraggio per il controllo dell'ambiente marino-costiero (triennio 2001-2003). Metodologie analitiche di riferimento*).

5.1.6.6 Parametri indagati

- -Temperatura: parametro fisico di grande importanza per le acque del Mar Adriatico, presenta marcate fluttuazioni stagionali a causa della bassa profondità media, della latitudine e dell' afflusso di acque fluviali.
- -Trasparenza: esprime la capacità di penetrazione della luce e quindi l'estensione della zona nella quale può avvenire la fotosintesi o "zona eufotica". E' influenzata da fattori fisici (capacità di assorbimento della luce da parte dell'acqua e presenza di materiali inorganici in sospensione) e biologici (distribuzione della massa fito- e zoo-planctonica e contenuto di detrito organico).
- Torbidità: indica la presenza di materiale organico e inorganico in sospensione e modifica le proprietà fisiche e chimiche dell'acqua soprattutto a livello di penetrazione della luce con conseguenze sulla produzione primaria. La torbidità può essere sia provocata da cause naturali sia da scarichi derivanti da attività umane. Essa viene espressa in NTU (Unità di Torbidità Nefelometriche).
- -Ossigeno disciolto: è presente in forma disciolta in equilibrio con l'O₂ atmosferico e dipende da alcuni fattori fisici (temperatura, pressione atmosferica, ventilazione e rimescolamenti lungo la colonna d'acqua), da caratteristiche chimico-fisiche dell'acqua (salinità, pH) e da processi biologici e chimici (attività fotosintetica, respirazione di piante e animali acquatici e mineralizzazione della sostanza organica).

-Salinità: le variazioni di salinità dipendono soprattutto dagli apporti di acque dolci in superficie

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

provenienti principalmente dall'Adriatico settentrionale e dall'ingresso di correnti di fondo di acque più salate dal bacino meridionale. Essa viene espressa in PSU (Practical Salinity Unit).

-pH: le acque marine presentano generalmente una notevole stabilità di pH garantita da un efficiente sistema tampone; questo è rappresentato dall'equilibrio dello ione bicarbonato tra le due forme bicarbonato di calcio (solubile) e carbonato di calcio (insolubile). Il pH è influenzato da alcuni fattori quali l'attività fotosintetica e i processi di decomposizione del materiale organico.

-Sali nutritivi: sotto tale denominazione vanno i composti dell'azoto e del fosforo in forma disciolta; questi composti sono costituiti da nitrati, nitriti, sali d'ammonio e fosfati. Tra essi viene compreso anche il silicio in quanto entra nella composizione dei frustuli di Diatomee, gusci e di spicole di Silicoflagellati e Radiolari. Sono sostanze chimiche che favoriscono la crescita delle microalghe e delle fanerogame marine. Avendo una scarsa concentrazione in mare costituiscono un fattore critico o limitante. A volte in determinate condizioni soprattutto nella fascia costiera e in bacini semichiusi si può avere un eccesso di queste sostanze che può dar luogo al fenomeno dell'eutrofizzazione.

La concentrazione dei nutrienti non è omogenea né in senso verticale, né orizzontale, né temporale. Nella distribuzione verticale, si può notare che negli strati superficiali, eufotici, essi vengono assimilati dagli organismi fotosintetici nei vari processi metabolici con formazione di materia organica, mentre negli strati profondi hanno luogo i processi rigenerativi con decomposizione di materia organica di provenienza diversa.

Il gradiente orizzontale è dovuto principalmente all'apporto costante di nutrienti da parte dei fiumi che convogliano al mare acque raccolte dai bacini imbriferi a monte; in relazione a tale gradiente esistono differenze notevoli tra il livello trofico della zona costiera e quello delle acque al largo. Per quanto riguarda l'andamento temporale, in particolare per azoto e fosforo, esso dipende principalmente dai seguenti fattori: la portata dei fiumi legata alle condizioni meteorologiche, l'andamento stagionale del fitoplancton e i processi rigenerativi a livello del sedimento.

-Clorofilla "a": è qualitativamente e quantitativamente il pigmento più importante nel processo della fotosintesi clorofilliana, sia in ambiente terrestre che in quello marino. In base alla relazione tra clorofilla "a" e produzione primaria, si è ritenuto opportuno utilizzare la valutazione del contenuto di clorofilla "a" come indice della biomassa fitoplanctonica. Come è stato osservato per i nutrienti anche la clorofilla è soggetta ad una variabilità spaziotemporale, essendo anch'essa coinvolta nei processi di produzione primaria e influenzata da più fattori (apporto di nutrienti, temperatura, intensità luminosa).

-Indice trofico TRIX: è un indice che permette di dare un criterio di caratterizzazione oggettivo delle acque, unendo elementi di giudizio qualitativi e quantitativi. L'indice trofico è stato calcolato sulla base di fattori nutrizionali (azoto inorganico disciolto -DIN e fosforo totale) e

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

fattori legati alla produttività (clorofilla "a" ed ossigeno disciolto).

D.Lgs. 152/99 - Allegato 1

3.4.3 Classificazione

3.4.3.1 Stato ambientale delle acque marine costiere

In attesa della definizione di un approccio integrato per la valutazione dello stato di qualità ambientale la prima classificazione delle acque marine costiere

costiere viene condotta attraverso l'applicazione dell'indice trofico riportato in tabella 16, tenendo conto di ogni elemento utile a definire il grado di allontanamento dalla naturalità delle acque costiere. Tale classificazione trofica sarà integrata dal giudizio emergente dalle indagini sul biota e sui sedimenti, allorché sarà disponibile il criterio di classificazione dello stato ambientale ...

Ai fini della classificazione dovrà essere considerato il valore medio dell'indice trofico, derivato dai valori delle singole misure durante il complessivo periodo di indagine (24 mesi per la prima classificazione e 12 mesi per le successive).

Tabella 16 - Definizione dell'indice trofico

Indice trofico = $[Log_{10} (Cha * D\%O * N * P) + 1,5]/1,2$

Cha = clorofilla «a» (μ g/L) D%O = ossigeno disciolto come deviazione % assoluta della saturazione (100-O₂D%)

 $P = fosforo totale (\mu g/L)$

 $N = N-(NO_3+NO_2+NH_3) (mg/m^3);$

I risultati derivanti dall'applicazione dell'indice di trofia determineranno l'attribuzione dello stato ambientale secondo la seguente tabella 17, valutato anche alla luce delle condizioni indicate nella stessa tabella 17.

Tabella 17 - Classificazione delle acque marine costiere in base alla scala trofica.

Indice di trofia	Stato ambientale	Condizioni
2 - 4	Stato ELEVATO	Buona trasparenza delle acque Assenza di anomale colorazioni delle acque Assenza di sottosaturazione di ossigeno disciolto nelle acque bentiche
4 -5	Stato BUONO	Occasionali intorbidimenti delle acque Occasionali anomale colorazioni delle acque Occasionali ipossie nelle acque bentiche
5 - 6	Stato MEDIOCRE	Scarsa la trasparenza delle acque Anomale colorazioni delle acque Ipossie e occasionali anossie delle acque bentiche Stati di sofferenza a livello di ecosistema bentonico
6 - 8	Stato SCADENTE	Elevata torbidità delle acque Diffuse e persistenti anomalie nella colorazione delle acque Diffuse e persistenti ipossie/anossie nelle acque bentiche Morie di organismi bentonici Alterazione/semplificazione delle comunità bentoniche Danni economici nei settori del turismo, pesca ed acquacoltura

INDICE DI TROFIA	STATO TROFICO	COLORE
2-4	Elevato	
4-5	Buono	
5-6	Mediocre	
6-8	Scadente	

Tabella 5.11: Classificazione trofica delle acque marine costiere (D.Lgs 152/99 e 152/06 e s.m.i.).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.1.6.7 Inquinanti chimici

Solventi clorurati: sono composti chimici derivati da idrocarburi a cui sono stati aggiunti atomi di cloro. I più noti sono il cloroformio, il tricloroetilene, il percloroetilene, il tetracloruro di carbonio, il tricloroetano. Si tratta di sostanze dotate di un ottimo potere solvente, propellente, refrigerante e di scarsa infiammabilità. Per le loro caratteristiche trovano largo impiego nell'industria chimica, tessile, della gomma, delle materie plastiche, degli estintori di incendio, dei liquidi refrigeranti, nelle operazioni di sgrassaggio e pulitura di metalli, pelli e tessuti. Per quanto concerne gli effetti tossicologici si può affermare che, benché questi cambino in funzione del tipo di sostanza, tutti i solventi clorurati, hanno proprietà narcotiche e neurotossiche, e quasi tutti possiedono tossicità epatica, renale ed emopoietica. Il largo utilizzo fatto negli ultimi decenni e gli smaltimenti scorretti hanno causato una notevole diffusione ambientale di questi composti sia nelle acque superficiali sia in quelle sotterranee. Per la loro volatilità, queste sostanze possono contaminare le acque superficiali essenzialmente in prossimità dei siti di sversamento.

Solventi aromatici: sono i composti a minor peso molecolare e maggiormente volatili appartenenti alla classe degli idrocarburi aromatici. I composti più rappresentativi sono: benzene, toluene, etilbenzene, xilene, propilbenzene, stirene. L'inquinamento da solventi organici aromatici deriva dal loro impiego in campo industriale e dall'uso di prodotti petroliferi (in particolare benzine). La loro diffusione nell'ecosistema acquatico è legata a perdite che si possono verificare durante le fasi di trasporto e stoccaggio di prodotti derivati dal petrolio. Tali composti rivestono grande importanza nel panorama della chimica delle acque perché ad essi è associata una notevole tossicità per l'ambiente e per gli esseri viventi. La sua pericolosità è dovuta principalmente agli effetti cancerogeni riconosciuti per l'uomo, conseguenti ad un'esposizione cronica.

Metalli pesanti: sono componenti naturali delle acque e dei sedimenti e sono considerati inquinanti se il loro livello eccede quello naturale e in particolare i metalli pesanti sono quelli maggiormente tossici; i più rappresentativi per il rischio ambientale sono: Mercurio (Hg), Cadmio (Cd) e Piombo (Pb). La forma cationi di questi metalli presenta alta affinità per lo zolfo degli enzimi presenti in alcune reazioni metaboliche fondamentali nel corpo umano: il complesso metallo-zolfo inibisce il normale funzionamento dell'enzima con conseguente danno per la salute dell'uomo. Il mercurio presenta il fenomeno della biomagnificazione, cioè la sua concentrazione aumenta progressivamente attraverso gli anelli della catena trofica.

Composti organo clorurati: sono composti caratterizzati dal legame del cloro con un atomo di carbonio e tra i loro derivati, il più noto è il DDT o [1,1,1-tricloro-2,2-di-(4-clorofenil)etano]. Sono ampiamente usati come pesticidi, erbicidi e fungicidi. Questi composti risultano fortemente tossici per l'uomo e per altri animali, inoltre non sono biodegradabili e una volta liberati nell'ambiente permangono in maniera definitiva nell'acqua, negli animali, nelle piante, nei sedimenti. La loro presenza indica una contaminazione di tipo "agricolo" operata soprattutto da

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

fiumi che drenano vaste aree di territorio. Sono stati rilevati nei tessuti dei mitili di molte località costiere, sia dell'Adriatico che del Tirreno, seppure con concentrazioni molto basse. I pesticidi clorurati rientrano tra gli inquinanti organici persistenti (POP) riconosciuti a livello internazionale.

Policlorobifenili (PCB): l'acronimo PCB indica un gruppo di sostanze chimiche industriali organoclurate (difenili policlorurati). I PCB sono insolubili in acqua e solubili in mezzi idrofobi, chimicamente inerti e difficili da bruciare, possono persistere nell'ambiente per lunghissimi periodi ed essere trasportati anche per lunghe distanze. Tendono ad accumularsi nel suolo e nei sedimenti, si accumulano nella catena alimentare e possono dar luogo al fenomeno della biomagnificazione, raggiungendo pertanto concentrazioni potenzialmente rilevanti sul piano tossicologico. Proprio per le loro caratteristiche di stabilità e bassa biodegradabilità, i PCB sono inquinanti ambientali pressoché ubiquitari. I PCB rientrano tra gli inquinanti organici persistenti (POP) riconosciuti a livello internazionale.

Idrocarburi Policiclici Aromatici (IPA): sono una gruppo di idrocarburi che contengono anelli benzenici condensati e si formano in seguito alla combustione incompleta di materiali organici contenti carbonio: sono composti cancerogeni.

Gli IPA presenti nell'ambiente provengono da numerose fonti: traffico auto veicolare, dal "catrame", dal fumo delle sigarette, dalla superficie di alimenti affumicati, dal fumo esalato dalla combustione del legno o del carbone; quelli che inquinano l'ambiente acquatico sono riconducibili alla fuoriuscita di petrolio dalle petroliere, dalle raffinerie e dai punti di trivellazione del petrolio in mare aperto.

Composti organostannici (TBT): sono composti organici a base di stagno largamente impiegati come agenti "antivegetativi" (antiincrostazione) alle vernici usate per le banchine, per lo scafo delle imbarcazioni, per le reti da pesca. Parte del composto del tributil stagno si libera nelle acque, di conseguenza tale composto penetra nella catena alimentare attraverso i microrganismi che vivono in prossimità della superficie. A causa della loro tossicità, persistenza e capacità di bioaccumulo si ritrovano anche in aree lontane dalla fonte originaria di emissione e concorrono a generare notevoli danni all'ecosistema marino.

5.1.6.8 Carbonio organico totale.

Il carbonio Organico Totale è un indice della concentrazione totale delle sostanze organiche: quella disciolta (DOM) e quella particelllata (POM).

5.1.6.9 Analisi granulometrica

E' una misura della dimensione media delle particelle che compongono i sedimenti marini; si determina la percentuale in peso della sabbia (particelle con diametro superiore ai 0,063 mm ma inferiore ai 2 mm) e delle peliti o fanghi (particelle con diametro inferiore ai 0,063 mm).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- ghiaia (superiore ai 2 mm di diametro);
- sabbia molto grossolana (compresa tra 2 e 1 mm);
- sabbia grossolana (compresa tra 1 e 0,5 mm);
- sabbia media (compresa tra 0,5 e 0,25 mm);
- sabbia fine (compresa tra 0,25 e 0,125 mm);
- sabbia molto fine (compresa tra 0,125 e 0,063 mm).

La composizione granulometrica è un parametro che influisce sulla capacità di accumulo di sostanze inquinanti da parte del sedimento (sedimenti con una abbondante frazione pelitica hanno la tendenza ad accumulare maggiori quantità di sostanze chimiche) ma anche sulle caratteristiche delle comunità bentoniche di fondo mobile.

5.1.6.10 Plancton

-Fitoplancton - Negli ecosistemi acquatici il *fitoplancton* ricopre un ruolo fondamentale, rappresentando il primo anello della catena trofica.

E' costituito da organismi vegetali in genere microscopici ed è il maggior responsabile dei processi fotosintetici e della produzione della sostanza organica necessaria allo zooplancton. La componente più rappresentativa del fitoplancton di mare, sia come numero di individui che come numero di specie, è generalmente costituita da Diatomee; ad esse si associano, con importanza variabile secondo la stagione e le condizioni idrologiche, altri gruppi algali, *Dinophyceae, Euglenophyceae, Cryptophyceae, Chrysophyceae*; altre classi che possono essere presenti, ma in minor parte, sono *Prasinophyceae* e *Rafidophyceae*.

La densità fitoplanctonica presenta variazioni stagionali strettamente correlate alla quantità di radiazione solare, alla disponibilità di macronutrienti (principalmente azoto e fosforo) e alla efficienza degli organismi che si cibano di alghe planctoniche. Comprende numerosissime specie che si differenziano per dimensione, morfologia ed ecologia; la distribuzione verticale è influenzata dalla percentuale di penetrazione della radiazione solare incidente e dalla sua progressiva estinzione, a loro volta dipendenti dalla presenza di torbidità minerale, di sostanze umiche e degli stessi organismi planctonici.

-Mesozooplancton - Rappresenta il secondo anello della catena trofica marina, in quanto gli organismi che vi appartengono si nutrono, principalmente, di fitoplancton. E' caratterizzato da un'estrema varietà di forme ed è costituito da organismi animali eterotrofi di dimensioni convenzionalmente comprese fra 0.2 e 20 mm. La densità dei popolamenti mesozooplanctonici varia notevolmente a seconda del periodo dell'anno ed è correlata alla concentrazione di biomassa algale. La distribuzione spaziale dello zooplancton nei mari non è di tipo casuale ma è

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

influenzata dalle caratteristiche delle masse d'acqua, sia su larga che piccola scala e dall'insieme delle caratteristiche fisiologiche e comportamentali degli stessi organismi. La distribuzione a livello geografico è influenzata principalmente dalla temperatura dell'acqua. All'interno dello stesso range di temperatura la distribuzione locale viene invece influenzata soprattutto dalla salinità, ma anche da altri fattori come: differenze nella profondità, velocità delle correnti, energia delle onde e torbidità. La maggior parte dei taxon appartenenti allo zooplancton mostrano infatti preferenze per specifici habitat o condizioni idrografiche a cui è legata anche, ovviamente, l'opportuna disponibilità trofica.

-Saggi biologici: Permettono di verificare la presenza di microinquinanti in concentrazioni tali da determinare effetti tossici a breve, medio o lungo termine sulle comunità biologiche. In tali saggi possono essere utilizzate diverse specie-test, differenti per trofia, sensibilità specifica, rilevanza ecologica (batteri, alghe, molluschi bivalvi, policheti, echinodermi). Sono uno strumento essenziale da utilizzare in maniera complementare alla determinazione della concentrazione di inquinanti chimici, al fine di valutare la qualità dei sedimenti marini.

5.1.6.11 Biota

Le misure di bioaccumulo vengono effettuate sul bivalve *Mytilus galloprovincialis*, i campioni del bivalve vengono prelevati presso un allevamento individuato in un'area in prossimità della costa e vengono trapiantati in prossimità dei transetti di monitoraggio. Tali organismi vengono sottoposti ad analisi chimica e ad analisi dei biomarkers.

D.Lgs. 152/99 - Allegato 1

3.4.2 Campionamento

3.4.2.2 Frequenza dei campionamenti

<u>Biota:</u> è prevista una frequenza semestrale per le analisi di bioaccumulo (indicate in tabella 14); per l'esame delle biocenosi di maggior pregio ambientale, anche al fine della realizzazione di una cartografia biocenotica di dettaglio, è prevista una cadenza triennale.

3.4.2 Campionamento

3.4.2.1 Criteri per la scelta delle stazioni di prelievo

Biota

Le stazioni di campionamento dei mitili indicati al punto 3.4.1.2. devono essere fissate in modo tale da rappresentare l'intera "tipologia" costiera (eventuali fonti di immissione industriali o civili, apporti fluviali, attività portuali, aree "indisturbate" etc.) Devono inoltre essere identificate stazioni più rappresentative delle biocenosi di maggior pregio ambientale presenti nell'area in studio al fine della realizzazione di una cartografia biocenotica con scala adeguata.

5.1.6.12 Biomarkers

I biomarkers sono alterazioni evidenziabili e quantificabili di una risposta biologica (fisiologica, biochimica) che possono essere correlati all'esposizione o all'effetto tossico di uno o più contaminanti. Tra gli organismi maggiormente utilizzati ci sono i molluschi bivalvi che per la loro

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

elevata capacità di filtrazione, accumulano sostanze presenti sia nell'acqua, che quelle legate al particolato in essa presente, pertanto il loro monitoraggio ha lo scopo di rilevare la presenza di specifiche fonti di contaminazione e di fornire indicazioni sul livello di compromissione dell'area indagata.

5.1.6.13 Macrozoobenthos

Organismi marini animali (zoo benthos) e vegetali (fitobenthos) che vivono a stretto contatto con il fondale o ancorati a substrati duri. Le indagini condotte riguardano lo studio delle comunità zoobentoniche di fondi mobili, cioè costituiti da sabbia e/o fango, che caratterizzano l'ambiente marino. Infatti queste comunità permanendo per lungo tempo in una data area sono esposti in maniera continua tanto ai fattori che ne supportano lo sviluppo (nutrienti, radiazione solare, ecc) quanto ai fattori che ne possono determinare una loro alterazione (inquinanti, variazioni fisico-chimiche delle acque, ecc). Per questo motivo il controllo della composizione (attraverso la determinazione delle liste di specie presenti in queste comunità in una data area e delle abbondanze relative di ogni singola specie) e della struttura (attraverso il calcolo di indici di diversità) delle comunità bentoniche dei fondi mobili vengono utilizzati per individuare eventuali fenomeni di perturbazione dell'area studiata che hanno agito in un intervallo di tempo e di spazio molto ampio. Per tale motivo le comunità bentoniche di fondo mobile sono considerate un "indicatore sintetico" della qualità dell'ambiente marino.

5.1.6.14 Microalghe Bentoniche

Le microalghe bentoniche sono forme di vita unicellulare appartenenti al gruppo delle alghe, vivono adese su superfici solide sommerse. Le classi algali che rappresentano le microalghe bentoniche sono le diatomee, i cianobatteri, le dinoflagellate. L'analisi è finalizzata alla ricerca delle specie tossiche.

5.1.6.15 Sedimenti

Le analisi effettuate sui *sedimenti*, secondo quanto riportato nel D.Lgs. 152/99 e D.M 56/08 hanno interessato:

- idrocarburi policiclici aromatici (IPA);
- metalli pesanti bioaccumulabili;
- composti organoclorurati (PCB, DDT e analoghi, isomeri dell'Esaclorocicloesano HCH);
- atri inquinanti

Sui sedimenti sono state effettuate anche le analisi granulometriche.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

D.Lgs. 152/99 - Allegato 1

3.4.2 Campionamento

3.4.2.1 Criteri per la scelta delle stazioni di prelievo

Sedimenti

Le stazioni di prelievo devono essere fissate nella fascia costiera, in modo tale da rappresentare le diverse tipologie di immissione che insistono nell'area (eventuali apporti industriali o civili, apporti fluviali, attività portuali), nonché aree scarsamente soggette ad apporti antropici (come corpo idrico di riferimento).

3.4.2 Campionamento

3.4.2.2 Frequenza dei campionamenti

<u>Sedimenti:</u> è prevista una frequenza di campionamento annuale. Il campionamento dovrà essere effettuato sempre nello stesso periodo dell'anno e corrispondere al periodo di minor influenza degli eventi meteo-marini (si consiglia il periodo estivo).

3.4.1.3 Sedimenti

Le determinazioni sui sedimenti riguardano tipi di indagini di base ed addizionali. Sono considerate di base e quindi prioritarie le analisi dei parametri indicati nella tabella 15. Qualora le autorità ritengano necessaria un'analisi più approfondita volta a evidenziare gli effetti tossici a breve o a lungo termine, ovvero ritengano opportuno integrare il dato chimico nella valutazione della qualità del sedimento, potranno essere effettuate indagini addizionali, quali saggi biologici condotti su specie selezionate appartenenti a diversi gruppi tassonomici, privilegiando le specie autoctone o quelle per le quali esistano dei protocolli standardizzati.

Tabella 15 - Determinazione da eseguire nei sedimenti:

Analisi granulometrica per la determinazione delle principali classi granulometriche (ghiaie;sabbie; limi; argille)	Carbonio Organico
Idrocarburi Policiclici Aromatici -IPA	Composti organoclorurati (PCB e pesticidi) (vedi nota (*) Tabella 14)
Metalli pesanti bioaccumulabili	Composti organostannici (#)
Saggi biologici	Composti organostannici (#)

(#) Lo screening dei composti organostannici può essere limitato alle aree in prossimità dei porti

5.1.6.16 Analisi dei risultati

I risultati presentati sono riferiti a prelievi e rilievi effettuati nell'anno 2009, da gennaio a novembre. Avverse condizioni meteo non hanno permesso le uscite in mare del mese di dicembre, pertanto è stato deciso di proseguire i prelievi nelle quattro aree, anche nei primi due mesi dell'anno 2010.

La campagna di monitoraggio sui quattro transetti della Rete Regionale ha portato all' acquisizione di 576 dati meteo marini, 528 dati analitici con la sonda multiparametrica e al prelievo di: 88 campioni di acqua, 44 di fitoplancton, 44 di zooplancton, 12 di sedimento, 8 di biota, 16 di benthos e 12 campioni di acqua per la ricerca delle microalghe bentoniche.

ACQUA

I campioni della matrice acqua prelevati in superficie, sono stati analizzati mensilmente per la determinazione dei nutrienti e nei mesi di maggio, giugno, ottobre e novembre per la determinazione degli inquinanti chimici.

I dati analitici rilevati in campo e in laboratorio, sono stati elaborati ed analizzati.

Nella tabella seguente (**Tabella 5.12**)sono riportati valori medi, mediana, minimo, massimo e deviazione standard dei vari parametri acquisiti in campo nell'anno 2009.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Temperatura acqua (°C)

Staz	media	mediana	minimo	massimo	Dev. Std
GU01	17,70	19,41	8,20	28,76	6,34
GU03	17,62	19,11	8,06	28,64	6,41
PE04	17,44	18,27	7,76	28,17	6,25
PE06	17,46	18,34	8,03	27,81	6,20
OR07	17,52	18,70	7,98	27,69	6,36
OR09	17,57	18,09	7,70	27,65	6,50
VA10	17,49	18,05	7,86	27,77	6,31
VA12	16,68	18,31	8,31	27,96	6,09

Concentrazione idrogenionica (unità pH)

consensuations in ogeniemen (unital pri)						
media	mediana	minimo	massimo	Dev. Std		
8,04	8,01	7,93	8,16	0,08		
8,01	8,02	7,83	8,12	0,09		
8,03	8,06	7,75	8,25	0,14		
8,00	8,01	7,85	8,09	0,09		
8,01	7,99	7,86	8,19	0,09		
7,98	7,99	7,70	8,09	0,11		
8,04	8,01	7,90	8,25	0,11		
7,99	7,98	7,58	8,25	0,17		

Ossigeno disciolto (% sat.)

Staz	media	mediana	minimo	massimo	Dev. Std
GU01	102,78	101,68	88,49	120,00	10,95
GU03	103,04	102,56	87,95	120,58	11,30
PE04	103,60	103,87	87,52	123,16	11,42
PE06	103,54	103,26	85,71	122,60	11,53
OR07	102,27	101,55	93,03	117,41	6,75
OR09	102,16	102,37	89,91	116,36	7,30
VA10	101,45	101,23	91,43	117,46	7,52
VA12	99,43	99,66	91,36	108,21	4,99

Clorofilla (-g/L)

()					
media	mediana	minimo	massimo	Dev. Std	
0,40	0,32	0,16	1,02	0,30	
0,33	0,27	0,11	1,22	0,32	
0,36	0,32	0,11	0,69	0,20	
0,33	0,27	0,09	0,77	0,22	
0,49	0,43	0,15	0,97	0,27	
0,41	0,30	0,13	1,05	0,27	
0,35	0,24	0,12	1,14	0,29	
0,29	0,21	0,06	0,79	0,23	

Tabella 5.12: valori medi, mediana, minimo, massimo e deviazione standard dei parametri misurati nell'anno 2009

TEMPERATURA

In superficie il valore medio annuo più alto si è registrato a GU03 (17,70 °C) mentre il valore più basso a VA12 (16,68 °C); i valori mensili evidenziano un minimo di 7,70 °C a febbraio (staz OR09) e un massimo di 28,64 °C ad agosto (staz GU03).

L'andamento dei valori mensili di temperatura misurata in superficie è riportato in Figura 5.4:

SERVIZIO QUALITA' DELLE ACQUE

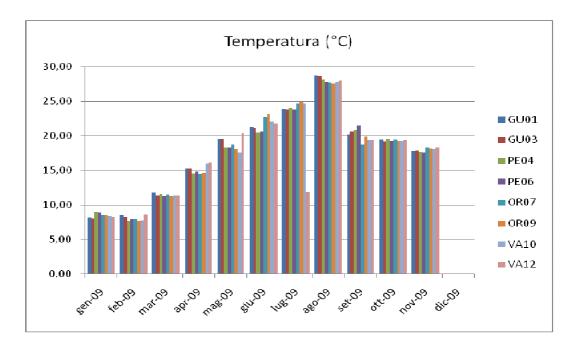


Figura 5.4: Valori mensili di Temperatura dell'acqua in superficie

TRASPARENZA

I valori di trasparenza sono compresi tra un massimo di 15 m, rilevato a luglio presso la stazione VA12 e un minimo pari a 0,5 m rilevato nella stazione VA10 nel mese di febbraio.

Nella **Figura 5.5** è riportato l'andamento medio della trasparenza per ciascuna campagna di rilevamento alle diverse distanze dalla costa.

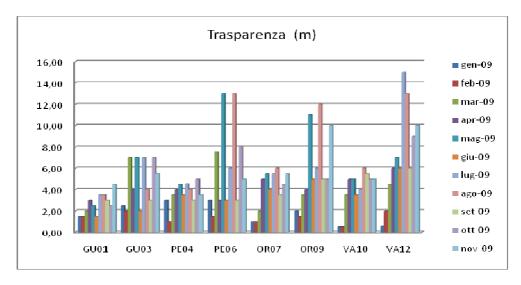


Figura 5.5: andamento medio della trasparenza

SERVIZIO QUALITA' DELLE ACQUE

SALINITÀ

In superficie la distribuzione dei valori di salinità presenta un'escursione compresa tra il valore minimo di 30,31% (stazione PE04 nel mese di aprile) ed il valore massimo di 38,24 % (stazione VA10 nel mese di novembre).

Nella **Figura 5.6** sottostante si riporta l'andamento delle salinità mensili, registrate in superficie presso le stazioni monitorate.

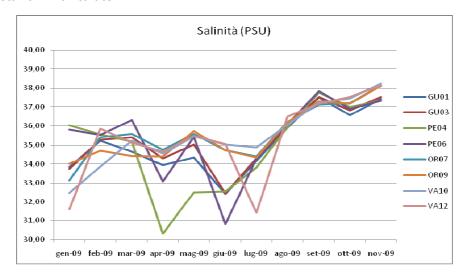
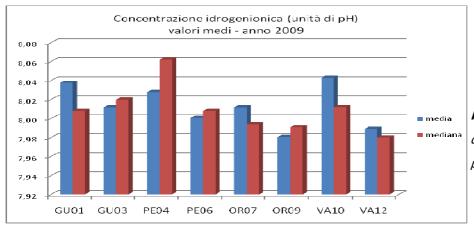



Figura 5.6: andamento medio della salinità

CONCENTRAZIONE IDROGENIONICA

Rappresenta il parametro che, grazie all'azione del forte sistema tampone esercitata dall'acqua di mare, esprime la più ristretta variabilità con un valore medio in superficie pari a 8,01 unità di pH, un massimo di 8,25 (staz. PE04 e VA10 a febbraio) ed un minimo di 7,58 (staz. VA12 a luglio). Nella **Figura 5.7** si riporta la distribuzione dei valori medi mensili di pH calcolati in superficie.

Figura 5.7: distribuzione dei valori medi mensili di pH.

SERVIZIO QUALITA' DELLE ACQUE

OSSIGENO DISCIOLTO

In superficie il valore medio di ossigeno disciolto riscontrato è di 102,28 % con un minimo di 85,71 % alla staz. PE06 a settembre ed un massimo di 123,16 % alla staz. PE06 a giugno. Nella **Figura 5.8** si riporta la distribuzione dei valori medi mensili di ossigeno disciolto misurato in superficie.

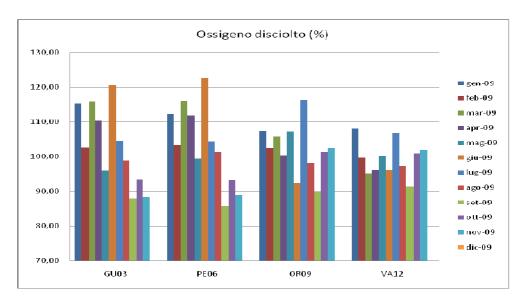


Figura 5.8: distribuzione dei valori medi mensili di Ossigeno disciolto.

CLOROFILLA "A"

In superficie la concentrazione media annuale di clorofilla a, misurata in loco tramite fluorimetro associato alla sonda multiparametrica, è stata di 0,37 μ g/L, con un valore minimo pari a 0.06 μ g/L alla staz. VA12 ad agosto ed un massimo di 1,22 μ g/L rilevato a gennaio alla staz. GU03 .

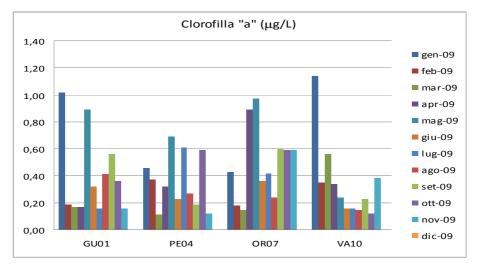


Figura 5.9: distribuzione dei valori di clorofilla a rilevati in superficie.

SERVIZIO QUALITA' DELLE ACQUE

NUTRIENTI:

AMMONIACA

In superficie la concentrazione media annua di ammoniaca è stata pari a 1,28 μ g/L con molti valori inferiori al limite di rilevabilità dello strumento (0,01 μ moli/L) ed un valore massimo di 19,04 μ g/L nella staz. GU01 ad agosto.

NITRATI

In superficie la concentrazione media del nitrato è di 84 μ g/L, con un valore minimo di 3,08 μ g/L nella staz. PE06 ad agosto ed un valore massimo di 315,28 μ g/L nella staz. VA10 a gennaio (**Figura 5.10**).

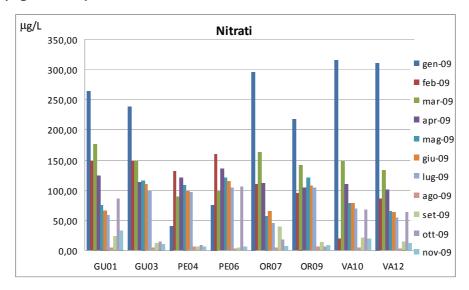


Figura 5.10: distribuzione dei valori di nitrati rilevati in superficie.

NITRITI

In superficie la concentrazione media dei nitriti è di 6,25 μ g/L con un valore minimo di 0,98 μ g/L ed un valore massimo di 49,14 μ g/L nella staz. PE04 ad agosto (**Figura 5.11**).

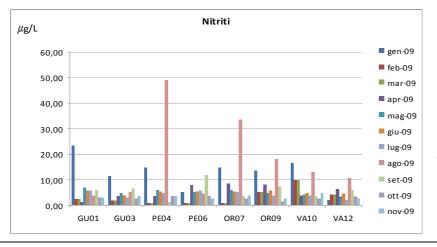


Figura 5.11: distribuzione dei valori di nitriti rilevati in superficie

SERVIZIO QUALITA' DELLE ACQUE

AZOTO TOTALE

In superficie la concentrazione media di azoto totale è di 268,27 μ g/L, con un valore minimo pari a 61,04 μ g/L alla stazione PE06 a settembre ed un valore massimo di 737,8 μ g/L nella stazione VA12 a gennaio (**Figura 5.12**).

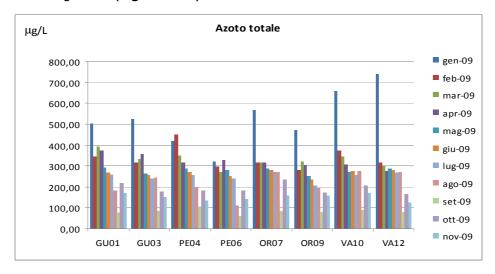


Figura 5.12: distribuzione dell'azoto totale

FOSFORO DA ORTOFOSFATI

In superficie la concentrazione media di fosforo da ortofosfati è di 20,14 μ g/L con un massimo di 167,40 μ g/L (staz.PE04 a settembre) ed un minimo di 1,86 μ g/L nella staz. VA12 ad agosto (**Figura 5.13**).

Figura 5.13: distribuzione dei valori di fosfati totale rilevati in superficie.

SERVIZIO QUALITA' DELLE ACQUE

FOSFORO TOTALE

In superficie la concentrazione media di fosforo totale è di 49,22 μ g/L con un massimo di 197,78 μ g/L (staz. PE04 a settembre) ed un minimo di 22,32 μ g/L nella staz. OR07 ad agosto (**Figura 5.14**).

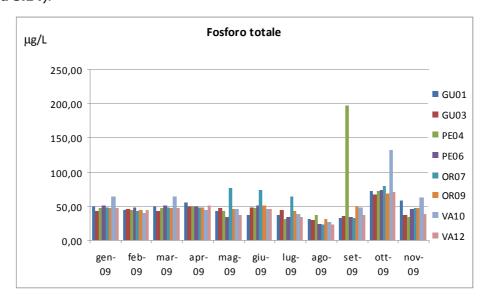


Figura 5.14: distribuzione dei valori di fosfati totale rilevati in superficie.

SILICATI

In superficie la concentrazione media di silicati è di 341,07 μ g/L con un massimo di 1321,20 μ g/L (staz. VA12 a gennaio) ed un minimo di 42 μ g/L a OR07 a marzo (**Figura 5.15**).

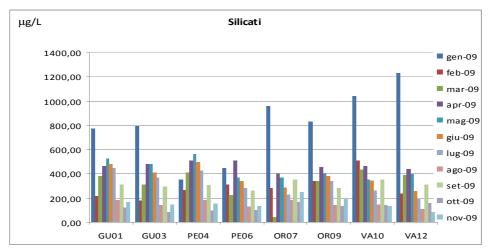
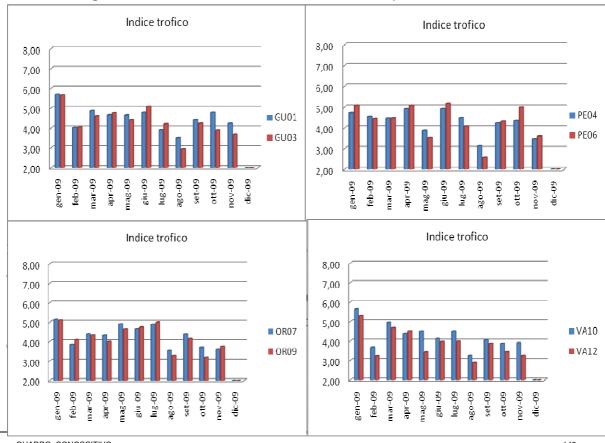


Figura 5.15: distribuzione dei valori dei silicati totali rilevati in superficie.

SERVIZIO QUALITA' DELLE ACQUE


INDICE TROFICO TRIX

I valori relativi al periodo indagato, calcolati utilizzando i valori di clorofilla "a" misurata in campo, evidenziano per le acque di superficie un valore medio annuale di indice trofico Trix pari di 4,34 per la fascia a 500 m dalla costa e un valore di 4,18 per la fascia a 3000 m dalla costa; entrambi corrispondono ad uno stato trofico "buono".I dati ottenuti sono riepilogati nella **Tabella 5.13** e **Figure 5.16 e 5.17**.

Staz	gen- 09	feb- 09	mar- 09	apr- 09	mag-09	giu-09	lug- 09	ago- 09	set- 09	ott-09	nov- 09	dic-09
GU01	5,69	4,02	4,87	4,66	4,65	4,78	3,92	3,50	4,41	4,78	4,23	-
GU03	5,66	4,04	4,62	4,76	4,40	5,09	4,21	2,95	4,24	3,91	3,68	-
PE04	4,72	4,54	4,46	4,92	3,87	4,92	4,48	3,12	4,23	4,34	3,47	-
PE06	5,07	4,44	4,47	5,07	3,53	5,18	4,08	2,56	4,31	4,99	3,59	-
OR07	5,14	3,85	4,40	4,34	4,91	4,66	4,89	3,54	4,39	3,70	3,60	-
OR09	5,11	4,10	4,34	4,01	4,65	4,75	5,01	3,28	4,16	3,18	3,75	-
VA10	5,65	3,67	4,96	4,39	4,49	4,13	4,49	3,25	4,05	3,87	3,90	-
VA12	5,29	3,24	4,68	4,50	3,42	3,97	3,98	2,89	3,87	3,43	3,24	-

Tabella 5.13: valori relativi al TRIX calcolato mensilmente per tutte le stazioni.

Figura 5.16: valori relativi al TRIX calcolato mensilmente per tutte le stazioni

SERVIZIO QUALITA' DELLE ACQUE

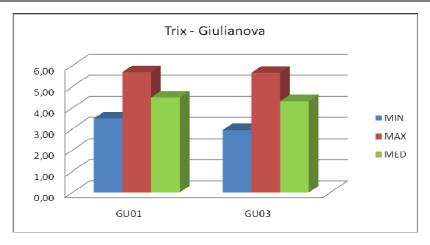


Figura 5.17: andamento dei valori di TRIX per le stazioni del transetto di Giulianova

Per il transetto di Pescara si ottiene un valore medio annuo di indice trofico pari a 4,29 (stato trofico "buono"). Nella stazione a 500 m (PE04) si registra un valore massimo di 4,92 a giugno e un valore minimo di 3,12 ad agosto; mentre nella stazione a 3000 m (PE06) si ottiene un valore massimo di indice di trofia pari a 5,18 a giugno e un valore minimo di 2,56 ad agosto (**Figura 5.18**).



Figura 5.18: andamento dei valori di TRIX per le stazioni del transetto di Pescara

Nel transetto di Ortona si ottiene un valore medio annuo di indice trofico pari a 4,26 *(stato trofico "buono").* Nella stazione a 500 m (OR07) si registra un valore massimo di 3,54 a gennaio e un valore minimo di 3,54 ad agosto; mentre nella stazione a 3000 m (OR09) si ottiene un valore massimo di indice di trofia pari a 5,11 a gennaio e un valore minimo di 3,18 ad ottobre (**Figura 5.19**).

SERVIZIO QUALITA' DELLE ACQUE

Figura 5.19: andamento dei valori di TRIX per le stazioni del transetto di Ortona

Il transetto di Vasto presenta un valore medio annuo di indice trofico pari a 4,06 *(stato trofico "buono").* Nella stazione a 500 m (VA10) si registra un valore massimo di 5,65 a gennaio e un valore minimo di 3,25 ad agosto; mentre nella stazione a 3000 m (VA12) si ottiene un valore massimo di indice di trofia pari a 5,29 a gennaio e un valore minimo di 2,89 ad agosto (**Figura 5.20**).

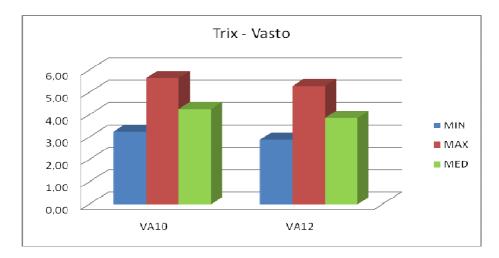


Figura 5.20: Andamento dei valori di TRIX per le stazioni del transetto di Vasto

INQUINANTI CHIMICI

Tutti i risultati degli inquinanti chimici determinati sui campioni di acqua prelevati nei mesi di maggio, giugno e novembre sono riportati in tabella tra gli allegati.

I valori di IPA, PCB e Pesticidi sono risultati sempre inferiori al limite di rilevabilità.

Di seguito sono riportati invece i risultati delle analisi sui metalli con valori spesso diversi dai limiti di rilevabilità ma comunque sempre inferiori ai limiti previsti dal DM 56/09 (**Tabella 5.14**).

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

metalli		GU	01			PE	04		Rif. Normativo
·g/L	mag-09	giu-09	ott-09	nov-09	mag-09	giu-09	ott-09	nov-09	DM 56/09 tab 1/A-1/B
As	4	3	2	2	< 2	2	< 2	4	5,0
Cd	<0,025	0,035	0,042	0,054	<0,025	0,058	0,052	0,047	0,2
Cr	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	4,0
Hg	0,010	0,010	0,008	0,006	<0,005	0,009	<0,005	<0,005	0,01
Ni	<0,25	1,22	0,96	1,28	<0,25	1,37	1,65	0,85	20
Pb	1,5	7,0	1,2	1,4	<0,1	3,2	1,8	0,9	7,2
metalli		OR	07			VA	10	Rif. Normativo	
·g/L	mag-09	giu-09	ott-09	nov-09	mag-09	giu-09	ott-09	nov-09	DM 56/09 tab 1/A-1/B
As	<2	4	-	< 2	<2	< 2	-	< 2	5,0
Cd	<0,025	0,053	-	0,044	<0,025	0,123	-	0,039	0,2
Cr	< 2	< 2	-	< 2	< 2	< 2	-	< 2	4,0
Hg	<0,005	0,010	-	<0,005	<0,005	0,007	-	<0,005	0,01
Ni	<0,25	3,60	-	0,79	2,17	1,36	-	0,89	20
Pb	<0,1	3,1	-	5,9	2,1	4,7	-	1,6	7,2

Tabella 5.14: analisi: risultati degli inquinanti chimici

Gli andamenti sono riportati nelle figure che seguono, tranne per il cromo che è risultato sempre inferiore al limite di rilevabilità.

Figura 5.21: Andamento dell'arsenico e del Cadmio nelle 4 stazioni di monitoraggio

SERVIZIO QUALITA' DELLE ACQUE

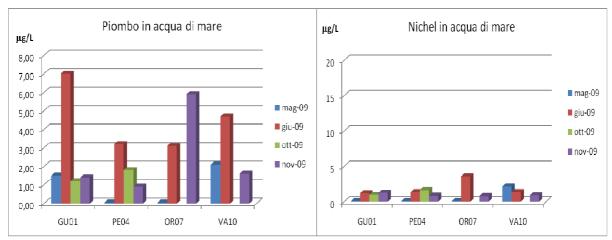


Figura 5.22: Andamento del Piombo e del Nichel nelle 4 stazioni di monitoraggio

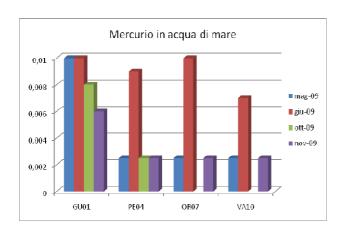


Figura 5.23: Andamento del Mercurio nelle 4 stazioni di monitoraggio

FITOPLANCTON

Le analisi relative alle abbondanze fitoplanctoniche vengono eseguite su campioni prelevati nelle sole stazioni a 500 m di distanza dalla costa.

Nella **Figura 5.24** vengono riportati gli andamenti per le abbondanze di fitoplancton totale, della classe delle Diatomee, delle Dinoflagellate e per il gruppo Altro fitoplancton. Dal confronto si nota come il fitoplancton totale sia dovuto principalmente alla componente Diatomee mentre è irrilevante il contributo della classe delle Dinoflagellate.

SERVIZIO QUALITA' DELLE ACQUE

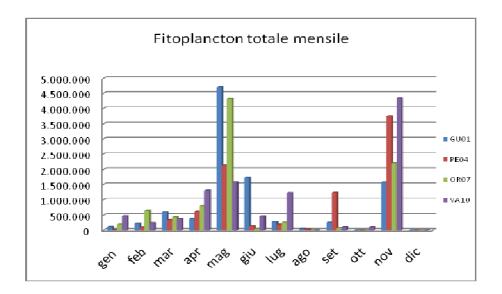


Figura 5.24: Valori medi delle abbondanze fitoplanctoniche (c/L) nelle stazioni a 500 m dalla costa.

Dai grafici in **Figura 5.25** si evidenzia la distribuzione delle abbondanze fitoplanctoniche caratterizzato da valori crescenti a partire dalla primavera con l'aumento di temperatura delle acque costiere, (valori massimi a maggio, 4.704.175 c/L, soprattutto nella stazione GU01) e un minimo assoluto di 22.160 c/L a gennaio nella stazione PE04.

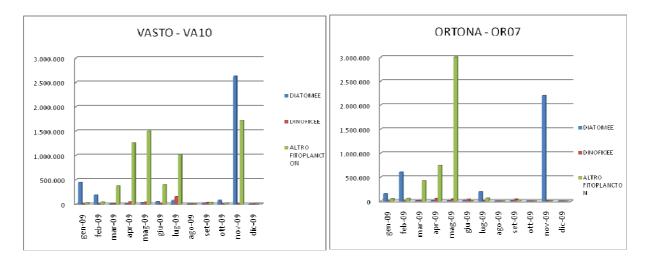


Figura 5.25: Andamenti mensili delle abbondanze fitoplanctoniche (c/L) per ogni stazione

In tutte le stazioni le Diatomee sono maggiormente presenti a novembre, (fioritura di *A. glacialis*), le Dinoficee sono maggiormente presenti a luglio, soprattutto nella stazione di Pescara, l'altro fitoplancton è costantemente rappresentato dalle Cryptoficee soprattutto nel periodo aprile-giugno. Nell'anno 2009 l'elenco floristico delle specie identificate è il seguente:

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

DIA	ATOMEE
Asterionellopsis glacialis	Lioloma pacificum
Bacteriastrum sp.	Lioloma sp.
Cerataulina pelagica	Navicula sp.
Cerataulina sp.	Nitzschia longissima
Chaetoceros curvisetus	Pleurosigma elongatum
Chaetoceros danicus	Pleurosigma normanii
Chaetoceros socialis	Proboscia alata
Chaetoceros sp.	Pseudo-nitzschia spp. N. s. C.
Coscinodiscus sp.	Pseudo-nitzschia spp. N. d. C.
Cylindrotheca closterium	Rhizosolenia robusta
Dactyliosolen sp.	Rhizosolenia setigera
Ditylum brightwellii	Rhizosolenia sp.
Guinardia flaccida	Skeletonema costatum
Guinardia striata	Skeletonema menzelii
Hemiaulus sp.	Skeletonema sp.
Lauderia annulata	Thalassionema frauenfeldii
Leptocylindrus danicus	Thalassionema nitzschioides
Leptocylindrus sp.	Thalassionema sp.
Licmophora flabellata	Thalassiosira rotula
Licmophora gracilis	Thalassiosira sp.

ALTRO FITOPLANCTON								
Altro fitoplancton indet.	Euglena sp.							
Chattonella sp.	Eutreptia ianowii							
Chrysophyceae indet.	Eutreptia sp.							
Coccolitoforidi indet.	Fibrocapsa japonica							
Cryptophyceae indet.	Prasinophyceae indet.							
Dictyocha sp.	Raphidophyceae indet.							

Durante l'anno di osservazione lungo tutta la costa sono stati rinvenuti 87 taxa, di cui 80 determinate a livello di genere o specie e 7 a livello di classe o di entità non determinate.

I taxa si sono così ripartiti:

- Diatomee 40 (46,0%)
- Dinoflagellate 35 (40,2%)
- Altro fitoplancton 12 (13,8%).

MICROALGHE TOSSICHE BENTONICHE

La ricerca di microalghe tossiche bentoniche è stata effettuata durante i mesi di giugno – luglio – agosto e in quattro stazioni individuate in corrispondenza degli scogli frangiflutti degli stessi transetti; sono stati prelevati 24 campioni di acqua in profondità e di macroalghe presenti sulle rocce mediante immersione di un operatore subacqueo e secondo quanto previsto dalle linee

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

guida: "Fioriture algali di *Ostreopsis ovata* lungo le coste italiane" prodotte da ISPRA. Negli stessi punti di campionamento sono stati effettuati:

- n. 288 acquisizioni dati meteomarini,
- n. 120 dati analitici da sonda multiparametrica,
- n. 168 dati chimici di nutrienti.

Di seguito si riporta la lista delle specie prioritarie di riferimento ricercate:

Microalghe bentoniche
Alexandrium ostenfeldii
Coolia monotis
Gambierdiscus toxicus
Ostreopsis lenticularis
Ostreopsis mascarenensis
Ostreopsis ovata
Ostreopsis siamensis
Prorocentrum lima

DINOFLAGELLATE								
Akashiwo sanguinea	Katodinium glaucum							
Ceratium candelabrum	Katodinium sp.							
Ceratium furca	Kofoidinium velloides							
Ceratium fusus	Noctiluca scintillans							
Ceratium lineatum	Peridinium quinquecorne							
Ceratium trichoceros	Podolampas sp.							
Ceratium tripos	Prorocentrum lima							
Cisti indet.	Prorocentrum micans							
Dinophysis caudata	Prorocentrum sp.							
Dinophysis rotundata	Protoperidinium diabolum							
Dinophysis sacculus	Protoperidinium divergens							
Diplopsalis group	Protoperidinium sp.							
Gonyaulax fragilis	Pseliodinium vaubanii							
Gonyaulax spinifera	Scripsiella sp.							
Gymnodinium sp.	Torodinium robustum							
Gyrodinium fusiforme	Torodinium sp.							
Gyrodinium sp.	Warnowia sp.							
Heterocapsa sp.								

Tutti i campioni analizzati hanno dato esito negativo; pertanto nessuna delle alghe presenti nella lista sono state ritrovate né nei campioni di acqua né nei campioni di macroalga.

MESOZOOPLANCTON

Le analisi relative al mesozooplancton sono eseguite su campioni prelevati nelle stazioni a 500

SERVIZIO QUALITA' DELLE ACQUE

m di distanza dalla costa e nel 2009 sono stati prelevati 42 campioni.

Per quanto concerne il mesozooplancton totale, l'intervallo di variazione delle abbondanze è risultato compreso tra un minimo assoluto di 290 individui/m³ (stazione PE04 nel mese di aprile) ed un massimo assoluto pari a 20.014 individui/m³ (stazione VA10 nella campagna di giugno).

Nella **Figura 5.26** sono riportati gli andamenti per le abbondanze di mesozoo plancton totale, della classe dei Cladoceri, dei Copepodi e per il gruppo Altro mesozooplancton.

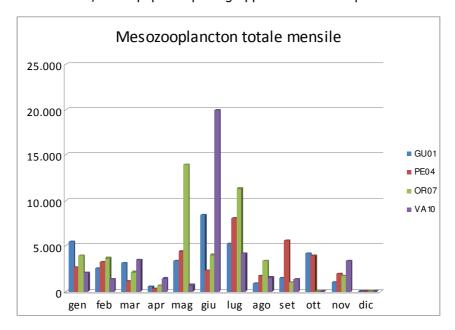


Figura 5.26: valori medi delle abbondanze zooplanctoniche (n/mc) nelle stazioni a 500 m dalla costa.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Nell'anno 2009 l'elenco dei taxa identificati è stato il seguente:

CLADOCERI	
Evadne spinifera	
Evadne tergestina	
Penilia avirostris	
Podon polyphemoides	
Podon sp	
COPEPODI	
Acartia clausi	Mecynocera clausi
Copepoditi Acartiidae indet.	Microsetella sp
Calanoida indet	Oithona copepoditi
Calanoida indet.Copepoditi	Oithona sp
Calanus sp.	Oithona similis
Calanus helgolandicus	Oncaea sp
Centropages copepoditi	Paracalanus parvus
Centropages ponticus	Paracalanus sp
Centropages typicus	Temora stylifera
Corycaeus sp	Temora stylifera copepoditi
Euterpina acutifrons	Temoridae copepoditi
Farranula sp	
Isias sp.	

ALTRO ZOOPLANCTON	
Appendicularia indet	Mollusca indet
Bivalvia larve	Naupli indet.
Cirripedia larve	Obelia sp.
Crustacea larve	Ostracoda indet
Crustacea indet.	Pisces larve
Echinodermata larve	Pisces uova
Gastropoda larve	Polychaeta larve indet.
Gastropoda indet.	Sagitta sp
Larve indet	Siphonophora indet
Medusae indet	Uova indet

Sono stati rinvenuti 49 taxa identificate a livello di classe o di entità non determinate; sono così ripartiti:

- Cladoceri 5 (10,2%)
- Copepodi 24 (49,0%)

SERVIZIO QUALITA' DELLE ACQUE

Altro mesozooplancton 20 (40,8%)

Nella **Figura 5.27** si può osservare che nella stazione di Giulianova c'è stato un andamento abbastanza uniforme di copepodi durante tutto l'anno con un picco durante il mese di gennaio ed uno più marcato nel mese di giugno. Un netto aumento di copepodi è stato osservato anche nella stazione di Ortona nel mese di maggio. Nella stazione di Pescara dove sono stati individuati copepodi quasi durante tutto l'arco dell'anno sempre a concentrazioni abbastanza elevate, si è osservato un netto aumento di cladoceri nel mese estivo di luglio non evidenziato nelle altre stazioni ad eccezione del transetto di Vasto che presenta un netto e significativo aumento di copepodi nel mese di giugno.

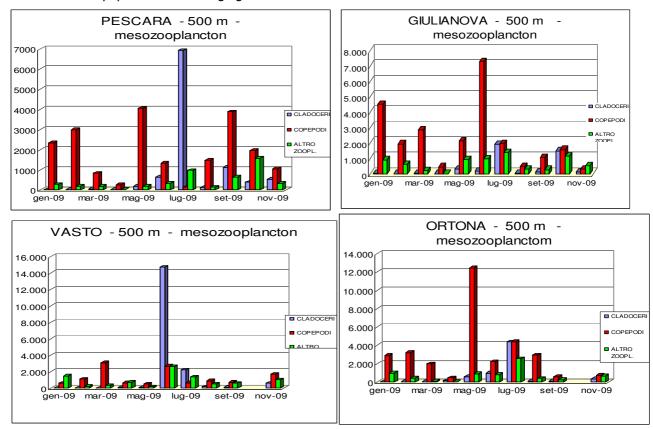


Figura 5.27: andamento mensile delle abbondanze zooplanctoniche (n/mc) per ogni stazione.

MACROBENTHOS

Nel corso del 2009 sono state realizzate due campagne per lo studio delle comunità macrozoobentoniche di fondi sabbiosi e fangosi, la prima campagna è stata effettuata nel mese di aprile e la seconda nel mese di ottobre, solo per i transetti di Giulianova e Pescara; avverse condizioni meteo non hanno permesso il campionamento degli altri due transetti di Ortona e Vasto.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Struttura delle comunità bentoniche di substrato mobile

Le stazioni a fondale sabbioso sono posizionate in prossimità della costa (GU01, PE04, OR07, VA10); di fatto proprio per la loro localizzazione risentono in modo maggiore dei fattori climatici (temperature) e degli apporti da terra (salinità) e quindi risultano soggette e evidenti fluttuazioni in termini di numero di specie e abbondanze.

Stazioni a fondale fangoso

Queste stazioni sono posizionate generalmente oltre i 3000 m dalla costa (GU03, PE06, OR09, VA12); non sono pertanto direttamente influenzati da apporti fluviali, le caratteristiche fisico chimiche dell'acqua (temperatura, salinità) risultano più omogenee durante l'anno, mentre il fattore più importante per le comunità presenti è rappresentato dalla disponibilità di ossigeno.

Gli esemplari di macrofauna campionati per lo studio delle comunità bentoniche di fondo mobile sono stati identificati, laddove possibile, sino a livello di specie e contati.

Il numero di specie e quello degli individui contati per ogni specie, sono stati utilizzati per il calcolo di: *indice di diversità specifica, indice di ricchezza specifica.*

- a) numero di specie
- b) numero di individui
- c) indice di diversità specifica (Shannon & Weaver, 1949): risulta compreso tra 0 e teoricamente, $+\infty$ e tiene conto sia del numero di specie presenti che del modo in cui gli individui sono distribuiti fra le diverse specie.
- d) *indice di ricchezza specifica* (Margalef, 1958): prende in considerazione il rapporto tra il numero di specie totali e il numero totale degli individui in una comunità. Quante più specie sono presenti nel campione, tanto più alto sarà tale indice.

Gli indici rappresentano parametri indicatori del grado di complessità delle biocenosi studiate, che prescindono dalle caratteristiche e dalle esigenze delle singole specie che le compongono.

Si presentano di seguito i dati emersi dalle indagini effettuate nelle due campagne di aprile, completa nelle sue otto stazioni, e quella di ottobre in cui per motivi legati alle condizioni meteo sono state campionate solo quattro stazioni.

Considerando separatamente le due tipologie di fondale: con sedimenti sabbiosi e con sedimenti più fangosi, coincidenti con le corrispondenti stazioni individuate per le indagini sui sedimenti, sono stati ottenuti i valori di indici di seguito riportati:

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

data prelievo apr-09	Indice di ricchezza specifica	Indice di diversità specifica	n. Individui	tot. specie
	d	Н	n	5
GU01	2,55	1,68	59700	29
GU03	2,71	4	3340	23
PE04	2,84	2,911	6740	26
PE06	2,96	3,54	1200	22
OR07	2,5	3,59	2020	19
OR09	2,14	4,36	1100	16
VA10	2,71	2,93	6920	24
VA12	2,39	4,36	1240	18

data prelievo	Indice di ricchezza specifica	Indice di diversità specifica	N. Individui	tot. specie	
ott-09	d	Н	n	S	
GU01	2,82	2,48	7920	26	
GU03	GU03 3,09 3		2370	25	
PE04	2,79 2,9		2620	23	
PE06	3,52	3,91	1630	27	
OR07	-	-	-	-	
OR09	-	-	-	-	
VA10	-	-	-	-	
VA12	-	-	-	-	

Il transetto di Ortona presenta il minor numero di specie sia nella stazione a 500 m (OR07) che in quella a 3000 m (OR09).

Il transetto di Pescara presenta valori più alti di Indice di ricchezza specifica, sia nella stazione PE04 che in quella a 3000 m (PE06); mentre l'Indice di diversità specifica più elevato si è registrato nella stazione di Giulianova a 3000 m (GU03).

SEDIMENTO

Analisi granulometriche

I risultati delle analisi granulometriche dei campioni superficiali di sedimenti prelevati nelle stazioni sotto costa sono prevalentemente arenitici non superando una percentuale della frazione pelitica del 10%.

I sedimenti prelevati a 3000m dalla costa mostrano in generale un aumento della frazione pelitica che arriva a valori superiori al 20% nelle stazioni di Giulianova, Ortona e Vasto. I grafici riportati di seguito (**Figure 5.28, 5.29, 5.30**) permettono di avere una visione di insieme per

SERVIZIO QUALITA' DELLE ACQUE

tutte le stazioni sui transetti a 500 e 3000m dalla costa.

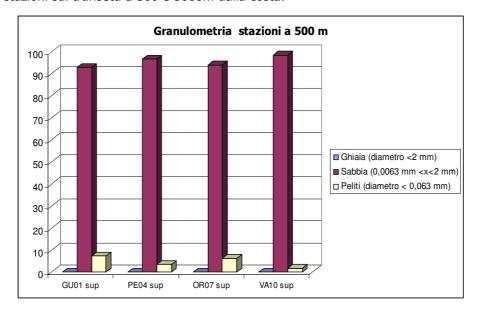
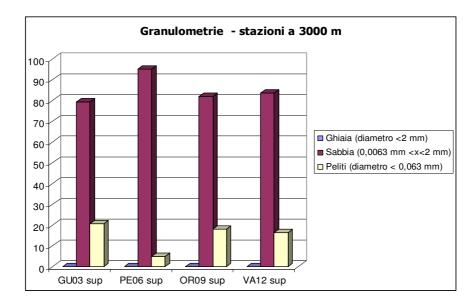



Figura 5.28. Caratterizzazione granulometrica del sedimento dei transetti a 500m dalla costa

Figura 5.29: caratterizzazione granulometrica del sedimento superficiale dei transetti a 3000 m dalla costa

SERVIZIO QUALITA' DELLE ACQUE

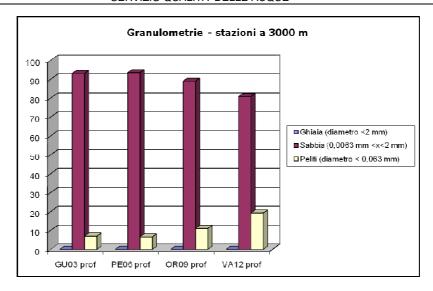


Figura 5.30: caratterizzazione granulometrica del sedimento profondo dei transetti a 3000 m dalla costa

Osservando i risultati per ogni stazione a parte i campioni di sedimento a 500 m in cui la componente arenitica è per tutte le stazioni predominante, la frazione pelitica a 3000 m risulta suscettibile di variazioni tra la parte superficiale e quella profonda. In genere tale componente aumenta nello strato più profondo, ma non è riscontrabile in tutte le stazioni.

Tali dati sono suscettibili di approfondimento in quanto sono relativi ad un sola campagna di campionamento (**Figura 5.31**).

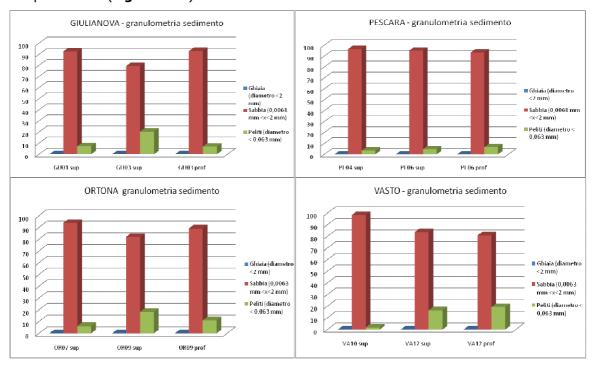


Figura 5.31: Risultati delle analisi granulometriche dei sedimenti di ogni transetto

SERVIZIO QUALITA' DELLE ACQUE

Per quanto riguarda il carbonio organico, i risultati mostrano valori compresi fra 0,7% (GU03 campione in superficie) e 3,7% (OR09 campione in profondità); le stazioni verso Nord (tranne GU03) presentano valori decisamente più bassi delle quattro stazioni verso Sud.

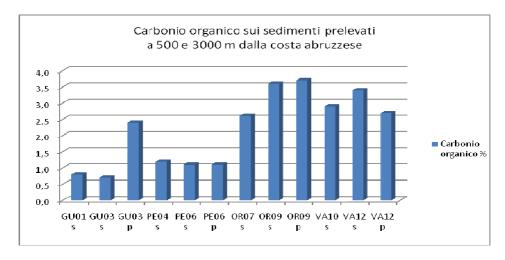


Figura 5.32: valori di carbonio organico presente nei sedimenti di ogni stazione

I risultati analitici relativi agli elementi in tracce dei campioni prelevati ad aprile sono riportati nella tabella che segue:

Data			16/04/2	009		17/04/2009						
prelievo Prof.	-3 -11 -11,2 -4 -13 -13,2							-15	-15,2	-5	-19,	-19,2
Staz.	GU01 s	GU03 s	GU03 p	PE04	PE06	PE06 p	-6 OR07 s	OR09 s	OR09 p	VA10	VA12 s	VA12 p
Carbonio org. %	0,8	0,7	2,4	1,2	1,1	1,1	2,6	3,6	3,7	2,9	3,4	2,7
Al (mg/kg ss)	3.257	3.092	4.099	3.158	3.300	3.439	3.025	5.846	4.934	2.742	5.646	4.593
Fe (mg/kg ss)	10.686	9.050	10.190	8.430	9.060	8.269	6.891	17.999	18.817	6.104	14.992	18.305
As (mg/kg ss)	6	7	6	8	7	6	7	7	7	7	8	8
Pb (mg/kg ss)	4	4	5	3	3	2	3	9	9	2	6	9
Cu (mg/kg ss)	5	4	5	3	4	3	3	15	16	2	10	14
Cd (mg/kg ss)	0,6	0,5	0,6	0,5	0,5	0,4	0,4	0,9	1,0	0,4	0,8	1
Hg (mg/kg ss)	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,07	0,2	0,025	0,06	0,025

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Data prelievo			16/04/20	009		17/04/2009						
Prof.	-3	-11	-11,2	-4	-13	-13,2	-6	-15	-15,2	-5	-19,	-19,2
Staz.	GU01 s	GU03 s	GU03 p	PE04 s	PE06 s	PE06 p	OR07	OR09 s	OR09 p	VA10	VA12 s	VA12 p
Ni (mg/kg ss)	13	9	11	8	9	8	6	26	28	6	17	26
Cr (mg/kg ss)	25	19	23	14	18	14	11	45	50	9	35	44
Va (mg/kg ss)	22	19	23	16	19	15	14	47	51	12	38	47
Zn (mg/kg ss)	19	12	18	9	12	10	16	39	38	15	26	36

Tabella 5.15: valori degli elementi in tracce rinvenuti nei sedimenti dei transetti a 500m e 3000m per tutte le stazioni.

Di seguito si riportati due grafici (**Figura 5.33**) con gli andamenti di: Alluminio, Ferro, Rame, Vanadio e Zinco; tali parametri non sono previsti dal DM 56/2009 pertanto non vi sono limiti di riferimento.

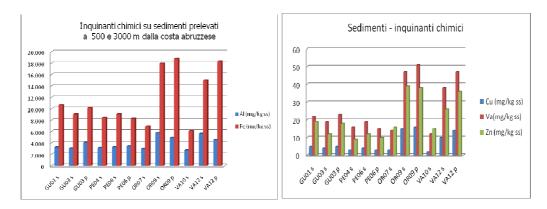


Figura 5.33: valori di Alluminio, Ferro, Rame, Vanadio e Zinco presenti nei sedimenti di ogni stazione

I successivi grafici invece riportano gli andamenti dei metalli previsti dal DM 56/2009 di cui sono noti i limiti di riferimento; è da notare che il Decreto parla di valori medi annui (SQ-MA) mentre qui ci si riferisce ad un solo campionamento annuale.

I valori dell'arsenico (limite 12 mg/kg ss) e del piombo (limite 30mg/kg ss) sono risultati tutti inferiori ai limiti tabellari (**Figura 5.34**).

SERVIZIO QUALITA' DELLE ACQUE

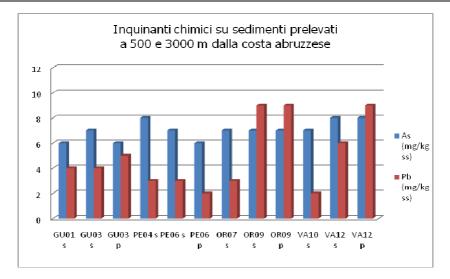
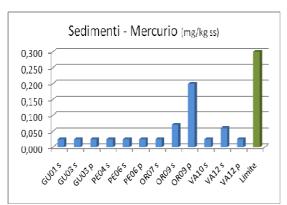
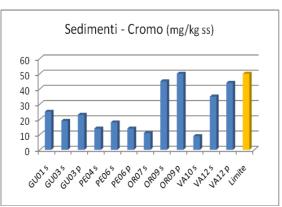




Figura 5.34: valori di arsenico e piombo presente nei sedimenti di ogni stazione

Anche i valori di cromo (limite 50 mg/kg ss), di nichel (limite 30 mg/kg ss) e di mercurio (limite 0,3 mg/kg ss) sono tutti inferiori ai limiti (Figura 5.35).

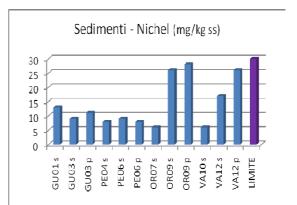


Figura 5.35: Valori di cromo, nichel e mercurio presenti nei sedimenti di ogni stazione

SERVIZIO QUALITA' DELLE ACQUE

Per quanto riguarda il cadmio invece, tutti i valori superano il limite (0,3 mg/kg ss), sia per i sedimenti in superficie che nei sedimenti in profondità, in particolare nelle stazioni a 3000 m di Ortona e Vasto (**Figura 5.36**).

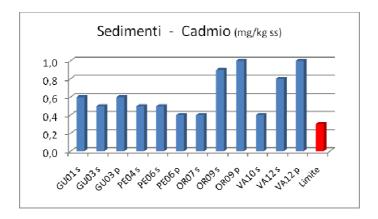


Figura 5.36: valori di Cadmio presenti nei sedimenti di ogni stazione

Per gli altri inquinanti determinati sui sedimenti si riporta quanto segue:

- Non sono stati mai ritrovati pesticidi organici
- I PCB sono assenti in tutte le stazioni
- I valori degli idrocarburi policiclici totali (IPA) sono tutti inferiori al limite (800 mg/kg ss) tranne nel sedimento superficiale nella stazione OR09 in cui il valore è di 851 mg/kg ss (**Figura 5.37**).

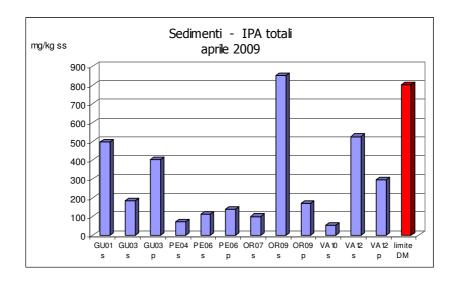
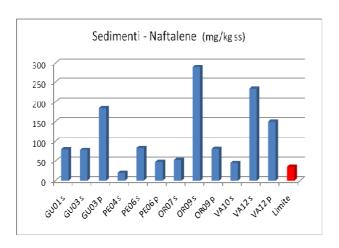


Figura 5.37: concentrazione di IPA presenti nei sedimenti di ogni transetto e di ogni stazione


PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

I componenti maggiormente presenti sono:

- o Naftalene con valori sempre superiori al limite tranne nella stazione PE04 sup.
- Fluorantene con valori alti ma comunque inferiori al limite, tranne a GU01.

Tali presenze sono da attribuire probabilmente ad apporti antropici dalle acque superficiali oppure alle attività da diporto (**Figura 5.38**)

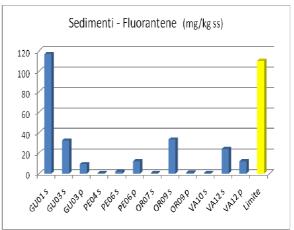


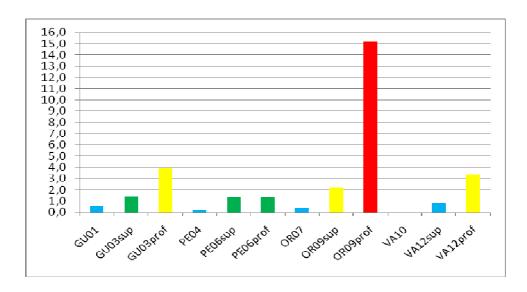
Figura 5.38: concentrazioni di Naftalene e Fluorantene presenti nei sedimenti di ogni stazione

SAGGI TOSSICOLOGICI

I saggi di tossicità sono stati effettuati su campioni di sedimento superficiale prelevati nei transetti a 500m dalla costa (GU01; PE04; OR07 e VA10) e sui sedimenti superficiali e profondi prelevati nei transetti a 3000m dalla costa (GU03; PE06; OR07 e VA12).

Per lo strato superficiale dei tratti più vicini alla costa sono stati utilizzati organismi quali il batterio marino *Vibrio fischeri* applicato al sedimento tal quale (Solid Phase Test) e alla matrice acquosa (elutriato) e l'alga marina *Dunaliella tertiolecta* applicata alla matrice acquosa.

Per lo strato superficiale e profondo dei sedimenti prelevati nelle stazioni a 3000m dalla costa, sono stati utilizzati il *Vibrio fischeri* applicato al sedimento tal quale e alla matrice acquosa elutriato, l'alga marina *Dunaliella tertiolecta* e il test di fecondazione e di embriotossicità (test di tossicità sub-cronico) con il riccio di mare *Paracentrotus lividus* applicati alla matrice acquosa.


I risultati ottenuti sul sedimento tal quale applicando il batterio luminescente direttamente sulla fase solida sono riportati in grafico per tutte le stazioni, i punti di campionamento (500 m e 3000 m) e per le diverse profondità. I risultati sono espressi in S.T.I. (Sediment Toxicity Index) come rapporto tra la tossicità misurata e quella naturale stimata in relazione alla frazione pelitica contenuta in ogni campione analizzato. Dato che la tossicità dei sedimenti è riconducibile prevalentemente alla frazione pelitica in quanto essa offre una maggiore superficie di adesione o di adsorbimento dei contaminanti, tale indice permette di correlare la tossicità

SERVIZIO QUALITA' DELLE ACQUE

eventualmente presente nella frazione <63mm. A tale indice è stata correlata una scala di tossicità acuta e un giudizio di qualità che va da assente a molto alta con relativa scala cromatica come riportato nella tabella e nel grafico seguente che mostra una visione complessiva dei risultati ottenuti con il SPT.

S.T.I.	GIUDIZIO	SCALA CROMATICA
0 ≤ STI ≥ 1	ASSENTE	
1 < STI ≤ 3	LIEVE	
3 < STI ≤ 6	MEDIA	
6 < STI ≤ 12	ALTA	
> 12	MOLTO ALTA	

Tabella 5.16: valori di STI e giudizio di tossicità per il SPT

Figura 5.39: risultati del test di tossicità con Vibrio fischeri applicato al sedimento tal quale espressi in STI (Sediment Toxicity Index)

Dal grafico risulta che tutte le stazioni a 500 m dalla costa non presentano tossicità (il campione di sedimento superficiale della stazione di Vasto, presenta solo un 22% di effetto). Le stazioni a 3000 m mostrano i sedimenti dello strato superficiale con una tossicità assente e lieve così come il sedimento dello strato profondo della stazione di Pescara (PE09). Il segnale di una tossicità media viene evidenziato nei sedimenti profondi delle stazioni di Giulianova e Vasto, mentre la stazione di Ortona presenta una tossicità media nel campione superficiale ed una tossicità molto alta nel campione profondo.

I risultati ottenuti su tutte le stazioni con tutti i saggi di tossicità applicati alla matrice acquosa elutriato vengono riportati nella successiva **Tabella 5.17:**

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Stazioni	Test con Vibrio fischeri	Test con Dunaliella tertiolecta	Test con Paracentrotus lividus		
	Elutriato (% di effetto)	Elutriato (% di inibizione)	Elutriato Elutriato Test di fecondazione (% di effetto) (EC50)		
GU01	11,83	-14			
GU03sup		4	15	46,78 (42,46-51,54)	
GU03prof		4	22	88 (73,44-105,44)	
PE04	0,79	0			
PE06sup		-14	23	55,83(50,82-61,34)	
PE06prof		-10	24	93,06(79,24-109,29)	
OR07	13,94	7			
OR09sup		7	3	45(% di effetto)	
OR09prof		14	4	48,64(41,56-56,93)	
VA10	7,06	-15			
VA12sup		-21	3	41(% di effetto)	
VA12prof		-18	3	78,45(73,66-83,54)	

Tabella 5.17: tabella riassuntiva dei test di tossicità applicati alla matrice acquosa elutriati espressi in percentuale di effetto e in EC50.

Dalla tabella si osserva che sono stati effettuati diversi test con organismi diversi: il test con il *Vibrio fischeri* è stato applicato alla matrice elutriato dei sedimenti dei transetti sotto costa, per essere confrontato con i risultati analitici ottenuti nelle precedenti campagne di monitoraggio marino-costiero. I risultati ottenuti nella campagna di analisi del 2009 riconfermano una tossicità acuta assente. Stesso risultato di tossicità acuta assente oltre ad un effetto di eutrofizzazione, è stato osservato su tutti i sedimenti analizzati con l'alga marina *D. tertiolecta*. Per quanto riguarda il test di tossicità con l'echinoderma, risulta che il test acuto di fecondazione ha dato risultati di tossicità acuta assente, mentre con il test sub-cronico di embriotossicità si è osservata una maggiore tossicità ed è stato possibile calcolare la EC50.

In base alla tabella per la classificazione della tossicità proposta dal Ministero nel Programma di Monitoraggio dell'ambiente marino-costiero 2008-2209, in funzione delle specie utilizzate nel saggio ecotossicologico e delle matrici analizzate è possibile individuare la seguente scala di tossicità: classe A (tossicità assente o trascurabile); classe B (tossicità media); classe C (tossicità alta) e classe D (tossicità molto alta). La **Tabella 5.18** riportata di seguito mostra l'insieme dei risultati ottenuti:

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

	GU01	GU03 sup	GU03 prof	PE04	PE06 sup	PE06 prof	OR07	OR09 sup	OR09 prof	VA10	VA12 sup	VA12 prof
Vibrio fischeri (SPT)	Α	Α	В	Α	А	Α	А	Α	D	Α	Α	В
Vibrio fischeri	Α			Α			А			Α		
Dunaliella tertiolecta	А	А	А	А	Α	Α	А	А	Α	А	А	Α
Paracentrotus lividus fecondazione		А	Α		Α	Α		А	Α		Α	Α
Paracentrotus lividus embriotossicità		В	В		В	В		А	С		Α	В

Tabella 5.18: tabella riassuntiva della scala di tossicità proposta dal Ministero elaborata in funzione delle specie utilizzate nel saggi ecotossicologici e delle matrici analizzate

I risultati ottenuti permettono di mettere in evidenza come il test di tossicità acuta con il batterio marino applicato alla fase solida e in maniera più evidente quello di tossicità sub-cronica con il riccio di mare applicato alla matrice acquosa siano stati in grado di evidenziare un certa tossicità soprattutto nei campioni profondi analizzati.

Dal confronto con le analisi chimiche è risultato che la stazione di Ortona nel transetto a 3000m dalla costa presenta le concentrazioni più alte per numerosi metalli pesanti (Pb, Hg, Cr) comunque nei limiti di legge ad eccezione del Cd che supera di circa 3 volte il valore di limite indicato per gli standard di qualità dei sedimenti.

BIOMARKERS

L'utilizzo dei mitili (*Mytilus galloprovincialis*) nel programma di monitoraggio 2009, ha previsto anche l'esecuzione dell'attività di "Mussel Watch" che è stata effettuata nel periodo tra maggio e settembre 2009. Tale metodologia prevede una fase di trapianto degli organismi presi da popolazioni naturali ed una esposizione per circa tre mesi nelle zone da studiare previo inserimento degli animali in gabbie appositamente costruite e nelle medesime condizioni in termini di età degli individui, stato riproduttivo e medesima profondità.

A tale scopo presso l'impianto S.I.L.MAR Acquacolture di Vasto sito in località Punta Penna, sono state prelevati esemplari di *Mytilus galloprovincialis* raggruppati in reste tagliate direttamente dall'allevamento con l'ausilio del personale dell'impianto. Per garantire l'omogeneità degli organismi sono stati scelti animali della stessa taglia (5-7 cm) corrispondenti a dei giovani adulti di 18-24 mesi.

Sono state preparate le gabbie secondo le indicazioni fornite da ISPRA, sono stati inseriti circa

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

150-200 individui (circa 3kg di organismi per ciascuna gabbia) e sono state posizionate dall'operatore subacqueo nei punti stabiliti in corrispondenza dei 4 transetti della costa oggetto di indagine a circa 1,8 miglia dalla costa, ad un'altezza compresa tra i 4 e i 6m e ad una profondità tra i 13 e i 16m.

Stazioni	Latitudine	Longitudine		
Giulianova	42°46'73''	14°00'64"		
Pescara	42°31'60''	14°11'75"		
Ortona	42°20'39''	14°28'12"		
Vasto (BIANCO)	42°14'20''	14°37'50"		

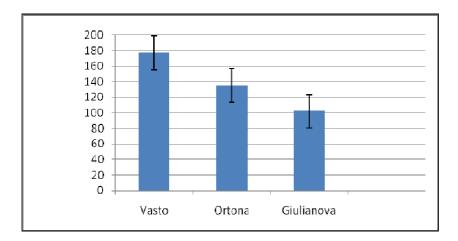
Tabella 5.19: coordinate dei punti di posizionamento delle gabbie di mitili

Allo scadere del tempo di esposizione (circa 3 mesi), sono state recuperate le gabbie tramite l'operatore subacqueo e per ciascuna resta si è proceduto alla misura della percentuale di mortalità dei mitili recuperati, alla misura di parametri biometrici e al calcolo dell'indice di condizione (I.C. rapporto tra peso secco delle carni e peso secco delle conchiglie) per un pool rappresentativo di 15 organismi. Su un pool di altri 5 organismi si è invece proceduto all'analisi dei biomarkers e nello specifico alla valutazione della stabilità delle membrane lisosomi e per un altro pool di circa 15-20 animali si è proceduto all'analisi chimica. Per quanto riguarda le analisi chimiche, queste sono state effettuate anche all'inizio dell'esposizione su un pool di organismi rappresentativi della popolazione di partenza proveniente dunque dalla mitilocoltura di Vasto.

La valutazione della stabilità delle membrane lisosomiali è stata effettuata in cellule vive utilizzando il test del rosso neutro che è un colorante lipofilo che attraversa liberamente le membrane cellulari. La quantità di colorante che può rimanere all'interno dei lisosomi dipende dal pH degli stessi organelli e dall'efficienza della pompa protonica di membrana. Il test del rosso neutro riflette l' efflusso del contenuto di colorante nel citosol del lisosoma a seguito di un'alterazione dell'integrità della membrana. Quindi qualsiasi alterazione del sistema vacuolare lisosomiale determinerà una riduzione nel tempo di ritenzione del rosso neutro all'interno dei lisosomi. Seguendo il protocollo fornito da ISPRA, sono state prelevate le cellule dall'emolinfa di ogni organismo e sono stati preparati diversi vetrini con il rosso neutro che sono stati osservati immediatamente al microscopio ottico ad ingrandimento 40x e fotografati ogni 15' per la prima e la seconda ora e ogni 30' dopo la seconda ora fino ad arrivare ad un'osservazione di circa 180' per ognuno dei 5 organismi e per ogni stazione. Scopo del test è di valutare il tempo a cui più della metà dei lisosomi ha rilasciato il colorante all'interno del citoplasma a causa della destabilizzazione delle membrane dei lisosomi. Per cui è stato necessario costruire una tabella in cui sono stati registrati i tempi di osservazione e per ognuno di essi è stato assegnato un "+" se più del 50% dei lisosomi tratteneva al suo interno il colorante, un "±" se la metà dei lisosomi appariva ancora colorata e un "-" se meno del 50% dei lisosomi conteneva ancora al proprio interno il colorante. Parallelamente oltre all'osservazione dell'operatore, le foto effettuate allo

SERVIZIO QUALITA' DELLE ACQUE

scadere dei tempi di osservazione, sono state analizzate con un programma di analisi di immagine (Scion Image) per misurare l'intensità del rosso neutro fissato ai lisosomi. Ai fini dei risultati si è deciso di basarsi sulla valutazione diretta al microscopio.


I risultati sono riferibili solo su tre delle quattro stazioni, in quanto nella stazione del transetto di Pescara non è stata rinvenuta la gabbia al momento del recupero.

I valori delle prime misure effettuate al momento del recupero sono riportate nella successiva **Tabella 5.20.**

Stazioni	Percentuali vivi	I.C.
Giulianova	60	0.13
Ortona	73	0.10
Vasto (BIANCO)	80	0.084

Tabella 5.20: misura della percentuale di mortalità dei mitili recuperati e valori dell'indice di condizione

Per quanto riguarda i risultati ottenuti con i biomarkers, è stata effettuata un'elaborazione statistica che ha permesso di correlare i tempi di osservazioni con la risposta di decadimento della colorazione del rosso neutro (es. "±" e "-") delle cellule lisosomiali degli organismi prelevati a Giulianova e Ortona in confronto alla stazione di Vasto (bianco) che non ha dato risposta fino ai 180' di osservazione per tutti i 5 organismi analizzati.

Vasto	CONTROLLO
Ortona	24%
Giulianova	42%

Figura 5.40: risultati i risultati ottenuti con i biomarkers (valutazione della stabilità delle membrane lisosomiali)

Il 42% osservato nella stazione di Giulianova mostra come a circa 90' dall'inizio dell'osservazione sia stata vista una destabilizzazione delle membrane lisosomiali.

Le analisi chimiche effettuate sul pool di organismi hanno messo in evidenza che nel transetto della stazione di Giulianova c'è stato un maggiore accumulo di contaminanti inorganici rispetto alla stazione di Ortona e soprattutto a quella di Vasto considerata stazione di riferimento.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

BIOTA

Le analisi chimiche eseguite sul biota sono state effettuate sul pool di circa 15-20 animali dopo la fase di bioaccumulo di circa tre mesi. I risultati mostrano una certa differenza nelle concentrazioni di alcuni analiti inorganici che potrebbe spiegare la risposta (destabilizzazione delle membrane lisosomiali) osservata nel transetto di Giulianova. I risultati complessivi dell'analisi chimica vengono riportate in **Tabella 5.21**.

	Matrice BIOTA					
	Data prelievo	30/9/09				
	Stazioni				VA	
	Unità di		<u> </u>	<u> </u>	· · ·	
sostanze	misura					
Argento	mg/kg ss	0,1	-	0,1	0,1	
Alluminio	mg/kg ss	560	-	362	378	
Arsenico	mg/kg ss	13	-	18	16	
Cadmio	mg/kg ss	1	-	1,7	2,2	
Cromo	mg/kg ss	1,7	-	1,5	1,4	
Rame	mg/kg ss	6,7	-	4,1	5,6	
Ferro	mg/kg ss	700	-	568	523	
Mercurio	mg/kg ss	< 0,05	-	< 0,05	< 0,05	
Nichel	mg/kg ss	2,1	-	1,8	3	
Piombo	mg/kg ss	3	-	1,2	1,5	
Vanadio	mg/kg ss	2,8	-	1,8	2,3	
Zinco	mg/kg ss	6,8	-	6,4	5,8	
4-4 DDT	μg/kg ss	< 0,5	-	< 0,5	< 0,5	
2-4 DDT	μg/kg ss	< 0,5	-	< 0,5	< 0,5	
4-4 DDE	μg/kg ss	< 0,8	-	< 0,8	< 0,8	
2-4 DDE	μg/kg ss	< 0,8	-	< 0,8	< 0,8	
4-4 DDD	μg/kg ss	< 0,4	-	< 0,4	< 0,4	
2-4 DDD	μg/kg ss	< 0,4	-	< 0,4	< 0,4	
α esaclorocicloesano	μg/kg ss	< 0,2	-	< 0,2	< 0,2	
β esaclorocicloesano	μg/kg ss	< 0,2	-	< 0,2	< 0,2	
γ esaclorocicloesano	μg/kg ss	< 0,2	-	< 0,2	< 0,2	
δ esaclorocicloesano	μg/kg ss	< 0,2	1	< 0,2	< 0,2	
Aldrin	μg/kg ss	< 0,2	-	< 0,2	< 0,2	
Dieldrin	μg/kg ss	< 0,2	-	< 0,2	< 0,2	
Esaclorobenzene	μg/kg ss	< 0,4	-	< 0,4	< 0,4	
Clorpirifos	μg/kg ss	< 0,9	-	< 0,9	< 0,9	
Clorfenvinfos	μg/kg ss	< 0,9	-	< 0,9	< 0,9	
Trifluralin	μg/kg ss	< 0,9	-	< 0,9	< 0,9	
α endosulfan	μg/kg ss	< 0,9	-	< 0,9	< 0,9	
PCB 52	μg/kg ss	< 1	-	< 1	< 1	
PCB 77	μg/kg ss	< 1	-	< 1	< 1	
PCB 81	μg/kg ss	< 1	-	< 1	< 1	
PCB 128	μg/kg ss	< 1,25	-	< 1,25	< 1,25	
PCB 138	μg/kg ss	< 1	-	< 1	< 1	

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

	Matrice	BIOTA 30/9/09				
С	Data prelievo					
	Stazioni	GU	PE	OR	VA	
sostanze	Unità di misura					
PCB 169	μg/kg ss	< 1,25	-	< 1,25	< 1,25	
PCB 153	μg/kg ss	< 1	-	< 1	< 1	
PCB 118	μg/kg ss	< 2,5	-	< 2,5	< 2,5	
PCB 28	μg/kg ss	< 1	-	< 1	< 1	
PCB 101	μg/kg ss	< 1	-	< 1	< 1	
PCB 126	μg/kg ss	< 2,5	-	< 2,5	< 2,5	
PCB 156	μg/kg ss	< 1,39	-	< 1,39	< 1,39	
PCB 180	μg/kg ss	< 1,25	-	< 1,25	< 1,25	
Naftalene	mg/kg ss	< 0,03	-	< 0,03	0,06	
Acenaftilene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
Acenaftene	mg/kg ss	0,02	-	< 0,01	0,03	
Fluorene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
Fenantrene	mg/kg ss	< 0,01	-	0,04	< 0,01	
Antracene	mg/kg ss	< 0,01	-	0,02	< 0,01	
Pirene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
benzo a antracene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
Fluorantene	mg/kg ss	< 0,01	-	0,02	< 0,01	
Crisene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
benzo b fluorantene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
benzo k fluorantene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
benzo a pirene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
dibenzo a-h antracene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
benzo g-h-i perilene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
Indeno 1-2-3 cd pirene	mg/kg ss	< 0,01	-	< 0,01	< 0,01	
Stabilità membrane lisosomiali	%	42	-	24	0	

Tabella 5.21: risultati delle analisi chimiche effettuate sul biota sottoposto all'analisi dei biomarkers.

CONSIDERAZIONI CONCLUSIVE

Nell'ambito delle attività istituzionali che l'ARTA Abruzzo conduce sulle acque marino-costiere, l'attività di campionamento nell'anno 2009 è stata condotta sulla Rete Regionale come previsto dal programma di monitoraggio, con lo sforzo operativo di rispettare le modalità e i tempi previsti; nonostante le avverse condizioni metereologiche che hanno comportato a volte lo slittamento delle date di campionamento o addirittura l'annullamento del campionamento stesso.

Nel dettaglio, dalle analisi dei dati raccolti, si può evidenziare quanto segue:

1. I valori di Indice trofico di tutta la costa individuano uno stato trofico "buono", infatti quasi sempre si registra una buona trasparenza delle acque e assenza di colorazioni anomale delle stesse; i valori di indice più bassi si registrano, in tutte le stazioni, nel

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

periodo estivo in particolare ad agosto.

- 2. Gli inquinanti chimici determinati nella matrice acqua (IPA, PCB, Pesticidi, metalli) sono risultati sempre inferiori ai limiti previsti dal DM 56/09.
- 3. La comunità fitoplanctonica è caratterizzata da valori elevati in primavera e in autunno, in coincidenza con fioriture di diatomee, tipiche in Adriatico durante le stagioni suddette.
- 4. La ricerca delle specie algali potenzialmente tossiche non ha evidenziato la presenza di nessuna delle specie da ricercare.
- 5. Gli inquinanti chimici determinati nella matrice sedimento (IPA, PCB, Pesticidi, metalli) sia in superficie che in profondità, sono risultati sempre inferiori ai limiti previsti dal DM 56/09 per tutti i parametri ricercati tranne:
 - il Cadmio che è risultato invece sempre superiore al limite e maggiormente nelle stazioni a 3000 m di Ortona e Vasto;
 - gli idrocarburi policiclici totali (IPA) che sono risultati tutti inferiori al limite (800 mg/kg ss) tranne nel sedimento superficiale nella stazione OR09 in cui il valore è di 851 mg/kg ss; i componenti maggiormente presenti sono stati Naftalene (valori sempre superiori al limite tranne nella stazione PE04) e Fluorantene (con valori alti ma comunque inferiori al limite, tranne a GU01).
- 6. Le analisi granulometriche hanno evidenziato che per ogni stazione a parte i campioni di sedimento a 500m in cui la componente arenitica è per tutte le stazioni predominante, la frazione pelitica a 3000m risulta suscettibile di variazioni tra la parte superficiale e quella profonda: in genere tale componente aumenta nello strato più profondo, ma non è riscontrabile in tutte le stazioni.
- 7. I risultati dei saggi di tossicità metto in evidenza come il test di tossicità acuta con il batterio marino applicato alla fase solida e in maniera più evidente quello di tossicità sub-cronica con il riccio di mare applicato alla matrice acquosa siano stati in grado di evidenziare un certa tossicità soprattutto nei campioni profondi analizzati.
- 8. Per quanto riguarda i risultati ottenuti con i biomarkers, nella stazione di Giulianova si è osservato un segnale dato da una destabilizzazione delle membrane lisosomiali. Le analisi chimiche effettuate sul pool di organismi hanno messo in evidenza che nel transetto della stazione di Giulianova c'è stato un maggiore accumulo di contaminanti inorganici rispetto alla stazione di Ortona e soprattutto a quella di Vasto considerata stazione di riferimento.
- 9. L'insieme delle informazioni raccolte nel 2009, insieme a quanto osservato negli anni precedenti, riconferma ancora una volta l'evidenza dell'estrema variabilità e complessità del sistema costiero indagato; entrambi gli aspetti sono riconducibili all'influenza di diversi fattori, tra cui le condizioni idrobiologiche e fisiche dell'intero bacino, l'alternarsi

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

delle stagioni, le condizioni meteorologiche, la collocazione geografica delle stazioni in relazione alle pressioni del territorio retrostante, gli apporti delle attività da diporto.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

5.2 Monitoraggio e classificazione dei corpi idrici sotterranei

Nei seguenti paragrafi sono state descritte le modalità di esecuzione del monitoraggio e di classificazione delle acque, riportando i principali risultati ottenuti dall'analisi dei dati raccolti.

Per il dettaglio sulle attività di monitoraggio attivate dal gennaio 2010 si rimanda all'elaborato A1.10: "Individuazione dei corpi idrici sotterranei e analisi delle pressioni e del lilvello di rischio ai sensi del D.Lgs 30/2010 " e alle carte di piano allegati allo stesso elaborato.

Di seguito vengono descritte le attività di monitoraggio svolte dal 2003 al 2009 e viene riportata la classificazione dei corpi idrici sotterraneei e la normativa di riferimento.

5.2.1 Monitoraggio

D.Lgs. 152/99 - Allegato 1

4 Monitoraggio e classificazione: acque sotterranee

4.1 Oganizzazione del monitoraggio

Per le attività di monitoraggio e classificazione dello stato di un corpo idrico sotterraneo è necessaria una preventiva ricostruzione del modello idrogeologico......

Il modello idrogeologico deve essere periodicamente aggiornato sulla base delle nuove conoscenze e delle attività di monitoraggio......

...Il monitoraggio delle acque sotterranee è articolato in una fase conoscitiva iniziale ed una fase di monitoraggio a regime......

Il monitoraggio delle principali risorse idriche sotterranee è stato realizzato fino a dicembre 2009 ai sensi del D.Lgs. 152/99.

In accordo con quanto previsto al punto 4.1 dell'Allegato 1 al D.Lgs. 152/99, prima di intraprendere le attività di monitoraggio dei corpi idrici sotterranei l'intero territorio regionale è stato caratterizzato da un punto di vista idrogeologico, attraverso la ricostruzione dello schema di circolazione idrica sotterranea e l'individuazione dei corpi idrici sotterranei significativi e di interesse (cfr. par. 1.2).

Come evidenziato nel paragrafo 1.2.3, i corpi idrici sotterranei significativi di maggiore rilevanza per la loro potenzialità idrica sotterranea sono quelli carbonatici prevalentemente calcarei, calcareo-marnosi più o meno selciferi e calcari dolomitici; inoltre svolgono un importante ruolo idrogeologico anche quelli ghiaioso-limoso-argillosi posti ai margini dei massicci carbonatici dai quali, in parte, traggono alimentazione e quelli contenuti nei depositi alluvionali dei fondovalle. Riguardo ai corpi idrici sotterranei di interesse, sono stati considerati tali quelli che si originano in alcune piccole piane alluvionali e fluvio-lacustri e in successioni calcareo-marnose-argillose; questi ultimi hanno un'importanza locale non trascurabile in quanto, anche se caratterizzati da una non elevata permeabilità e da una circolazione idrica molto frazionata, si trovano in aree in cui sono presenti prevalentemente formazioni poco o nulla permeabili (cfr. par. 1.2.4).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La rete di monitoraggio quantitativo e qualitativo delle risorse idriche sotterranee è stata appunto definita in funzione dei suddetti corpi idrici.

Le attività di monitoraggio sono state suddivise in:

- una *fase conoscitiva* della durata di 24 mesi (2003-2005);
- una *fase "a regime"* (iniziata nel 2006 e conclusa nel 2009).

Le attività operative di monitoraggio sono state affidate all'ARTA (Agenzia Regionale per Tutela dell'Ambiente) tramite Convenzione.

Il monitoraggio svolto nella *fase conoscitiva* ha permesso una prima classificazione dello stato di qualità ambientale dei corpi idrici sotterranei significativi (Cfr. par. 5.2.2)

5.2.1.1 Indicatori di qualità

D.Lgs. 152/99 - Allegato 1

4 Monitoraggio e classificazione: acque sotterranee

•••

4.2 Indicatori di qualità ed analisi da effettuare

4.2.1 Fase iniziale

4.2.1.1 Misure quantitative

Il monitoraggio quantitativo ha come finalità quello di acquisire le informazioni relative ai vari acquiferi, necessarie per la definizione del bilancio idrico di un bacino. Inoltre dovrà permettere di caratterizzare i singoli acquiferi in termini di potenzialità, produttività e grado di sfruttamento.

Questo tipo di rilevamento è basato sulla determinazione dei seguenti parametri fondamentali:

- livello piezometrico;
- portate delle sorgenti o emergenze naturali delle acque sotterranee.

4.2.1.2 Misure chimiche

La fase iniziale del monitoraggio dura 24 mesi ed ha la finalità di caratterizzare l'acquifero. Il rilevamento della qualità del corpo idrico sotterraneo è basato sulla determinazione dei "parametri di base" riportati nella Tabella 19. I parametri di tabella evidenziati con il simbolo (o) saranno utilizzati per la classificazione in base a quanto indicato in Tabella 20. Le autorità competenti devono analizzare i parametri addizionali relativi a inquinanti specifici, individuati in funzione della reconstituta della riscorsa e della tutola della contra della riscorsa e della tutola della contra della riscorsa e della tutola della riscorsa e della tutola della contra della riscorsa e della tutola della riscorsa e della tutola della contra della riscorsa e de

dell'uso del suolo, delle attività presenti sul territorio, in considerazione della vulnerabilità della risorsa e della tutela degli ecosistemi connessi oppure di particolari caratterististiche ambientali. Una lista di tali inquinanti con l'indicazione dei relativi valori di soglia è riportata nella Tabella 21.

4.2.2 Fase a regime

Nella fase a regime sulla rete di monitoraggio individuata in base ai risultati della fase conoscitiva iniziale vanno proseguite le misure sui parametri di base precedentemente utilizzati al punto 4.2.1.2. Si ritiene necessario considerare un periodo iniziale di riferimento di almeno cinque anni per poter definire le tendenze evolutive del corpo idrico.

Per le misure chimiche vanno inoltre monitorati tutti quei parametri relativi ad inquinanti inorganici o organici individuati dall'autorità preposta al controllo, in ragione delle condizioni dell'acquifero e della sua vulnerabilità, dell'uso del suolo e delle attività antropiche caratteristiche del territorio.

Al fine di acquisire informazioni relative ai vari acquiferi, per ciascuna stazione di misura, si è provveduto al monitoraggio:

- per gli aspetti quantitativi:
 - dei livelli piezometrici nei pozzi;
 - delle portate delle sorgenti e dei gruppi sorgivi, mediante misure alle sorgenti, misure differenziali lungo i corsi d'acqua e il recupero, presso gli Enti gestori, dei dati relativi alle portate captate;
- per gli aspetti qualitativi:
 - dei "parametri di base" della tabella 19 dell'Allegato 1 al D.Lgs. 152/99;

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

di gran parte dei "parametri addizionali" della tabella 21 dello stesso Allegato.

C'è solo da evidenziare che il numero dei "parametri addizionali" monitorati nella *fase* "a *regime"*, in accordo anche con quanto previsto dall'Allegato 1 del D.Lgs. 152/99, è stato ridotto rispetto a quello della *fase conoscitiva*, in quanto è stato attivato uno specifico progetto di monitoraggio dei prodotti fitosanitari (cfr. par. 7.3.1)

5.2.1.2 Stazioni di monitoraggio

Le stazioni di monitoraggio delle acque sotterranee sono state scelte in modo da tenere sotto controllo le risorse di maggiore pregio, e cioè quelle degli acquiferi carbonatici, monitorando in particolare le principali emergenze delle falde di base (sorgenti, gruppi sorgivi, incrementi di portata in alveo).

Per quanto riguarda gli acquiferi di origine alluvionale e fluvio-lacustre, si è scelta una maglia di pozzi per lo più ubicati lungo gli assi di drenaggio preferenziale della falda.

Invece per gli acquiferi calcareo-marnoso-argillosi (corpi idrici sotterranei cmag: CC, PG, S-P-V-C, CF-CA; cfr. Tavola 4-4), sono state inserite nella rete di monitoraggio solo quelle sorgenti caratterizzate da una portata media maggiore o uguale a 10 l/s.

Nella *fase conoscitiva (2003-2005)*, la rete di monitoraggio quantitativo e qualitativo delle risorse idriche sotterranee è risultata costituita da circa duecento punti d'acqua (quasi equamente suddivisi in pozzi e sorgenti e/o gruppi sorgivi) (Cfr. **Tabella 5..22** e Tavola 4-4).

La verifica della rete, avvenuta a valle dei primi due anni di monitoraggio (*fase conoscitiva*), ha permesso di evidenziare, in alcuni casi, l'esigenza di ottimizzare la distribuzione dei punti già presenti, di controllare quelli che non è stato possibile monitorare e, laddove necessario, di infittire la rete con l'inserimento di nuovi punti.

A tal fine, a partire da gennaio del 2006, nell'ambito del progetto "APQ monitoraggio corpi idrici", la Regione ha stipulato una nuova convenzione con l'ARTA in merito all' "Integrazione della rete di monitoraggio della acque sotterranee".

L'integrazione della rete di monitoraggio è consistita nell'inserimento in totale di 220 nuovi punti d'acqua, di cui 115 monitorati sia quantitativamente sia qualitativamente e 105 punti monitorati solo quantitativamente (**Tabella 5.22**). Detti punti sono stati ubicati nelle piane alluvionali e fluvio-lacustri in quanto si tratta delle aree che necessitano di un infittimento della rete ed una distribuzione più omogenea della maglia dei punti monitorati e per le quali sussistono le maggiori problematiche quali-quantitative delle acque sotterranee. L'unica eccezione è stata fatta per la struttura idrogeologica del Monte Cornacchia-Monti della Meta, per la quale sono stati individuati 5 nuovi punti (due sorgenti alimentate da falde superficiali e tre sezioni in alveo lungo il corso del Fossato di Rosa).

Nella suddetta rete è stato anche previsto l'inserimento di ulteriori 15 piezometri da realizzare nella Piana del Fucino, necessari a monitorare la falda acquifera più superficiale. La

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

realizzazione di questi piezometri è risultata indispensabile in quanto in tale area le acque captate tramite pozzi sono quelle di falde profonde relative all'acquifero carbonatico sottostante. Bisogna comunque sottolineare che l'integrazione dei nuovi punti alla rete di monitoraggio viene effettuata ogni volta che si individuano nuove necessità emergenti, il ché sta ad indicare che nel tempo verranno inseriti altri punti di misura. Tale rete, inoltre, sarà verificata nel corso del monitoraggio e pertanto potrà essere, laddove necessario, ulteriormente migliorata. Una particolare attenzione andrà prestata alla maglia di punti esistenti in corrispondenza di alcune piane, come quella dell'Alta Valle dell'Aterno, del Fucino-Imele e del Tirino.

Lo stesso discorso è da effettuare per i corpi idrici sotterranei di interesse. Per quelli alluvionali e fluvio-lacustri è già stato previsto un infittimento dei punti di monitoraggio; mentre, per quanto riguarda i corpi idrici sotterranei calcareo-marnosi-argillosi, essendo caratterizzati da una circolazione sotterranea molto frazionata, affinché possa essere monitorata la granparte delle risorse idriche esistenti, risulta necessario effettuare studi di maggior dettaglio.

Nella rete di monitoraggio delle acque sotterranee sono stati inseriti anche alcuni punti d'acqua generati dai terrazzi alluvionali e marini compresi tra le principali piane costiere (tra Pescara e Foro, tra Foro e Sangro, tra Sangro e Sinello) (cfr. **Tabella 5.21**). Ciò allo scopo di poter ottenere, a campione, informazioni relative a questa tipologia di acquiferi che è caratterizzata da una notevole disomogeneità idrogeologica.

L'ubicazione delle stazioni di misura della rete di monitoraggio è riportata nell'elaborato cartografico "Carta della rete di Monitoraggio quali-quantitativo delle Acque Sotterranee (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-4.

Per approfondimenti relativi alla rete di monitoraggio dei corpi idrici sotterranei è possibile far riferimento all'Appendice all'Allegato Monografico A1.2 "Relazione idrogeologica".

5.2.1.3 Frequenza di campionamento

D.Lgs. 152/99 - Allegato 1

4 Monitoraggio e classificazione: acque sotterranee

4.3 Misure

Per quanto riguarda gli aspetti quantitativi, su un numero ridotto di punti significativi appartenenti alle reti di monitoraggio individuate, le misure dovranno essere eseguite con cadenza mensile e sui pozzi, sui piezometri. Le misure sulle sorgenti dovranno essere anche più ravvicinate in ragione dei tempi di esaurimento della sorgente stessa. Per quanto riguarda le analisi chimiche dovranno essere eseguite, sia nella fase iniziale che per quella a regime, con cadenza semestrale in corrispondenza dei periodi di massimo e minimo deflusso delle acque sotterranee.

In merito alla frequenza di misura e di campionamento, riferendosi al punto 4.3 dell'Allegato 1 del D.Lgs. 152/99, nella fase conoscitiva essa è stata mensile per le misure quantitative e semestrale per quelle qualitative. Nella fase a regime la frequenza di misura dei livelli piezometrici è stata portata a semestrale, mentre la misura delle portate sorgive è ancora mensile e la misura dei parametri chimico-fisici semestrale.

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.22 - Stazioni della rete di monitoraggio quali-quantitativo delle acque sotterranee (2003-2009)

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		GS-S1(s)	sorgente	Gr. Sorg. Vomano	Vomano	Vomano	*
		GS-S2(s)	sorgente	Gr. Sorg. Chiarino	Chiarino	Vomano	*
		GS-S3(s)	sorgente	Gr. Sorg. Rio Arno	Rio Arno	Vomano	*
		GS-S4(s)	sorgente	Sorg. Galleria Autostradale Imbocco Nord	Mavone	Vomano	*
		GS-S5(s)	sorgente	Gr. Sorg. del Ruzzo	Ruzzo	Vomano	*
		GS-S6(s)	sorgente	Gr. Sorg. Mortaio d'Angri	Tavo	Saline	*
		GS-S7(s)	sorgente	Sorg. Vitella d'Oro	Tavo	Saline	*
		GS-S8(s)	sorgente	Sorg. Rivo Chiaro	Schiavon e	Pescara	*
		GS-S9(s)	sorgente	Gr. Sorg. Pietra Rossa	Nora	Pescara	*
		GS-S10(s)	sorgente	Sorg. Gravaro	Nora	Pescara	*
	Monti del Gran Sasso	GS-S11(s)	sorgente	Sorg. Galleria Autostradale Imbocco Sud	Aterno	Pescara	*
	Grait Sasso	GS-S12(s)	sorgente	Sorg. Santa Maria	Aterno	Pescara	*
		GS-S13(p)	pozzo	Campo-pozzi Acqua Oria	Aterno	Pescara	*
		GS-S14(s)	sorgente	Sorg. S. Giuliano	Aterno	Pescara	*
Monti del Gran Sasso -		GS-S15(s)	sorgente	Gr. Sorg. Vetoio	Aterno	Pescara	*
MonteSirente		GS-S16(s)	sorgente	Gr. Sorg. Alto Aterno	Aterno	Pescara	*
		GS-S17(s)	sorgente	Gr. Sorg. Tempera	Aterno	Pescara	*
		GS-S18(s)	sorgente	Sorg. CapoVera	Aterno	Pescara	*
		GS-S19(s)	sorgente	Gr. Sorg. Capo d'Acqua del Tirino	Tirino	Pescara	*
		GS-S20(s)	sorgente	Gr. Sorg. Alto Tirino	Tirino	Pescara	*
		GS-S21(s)	sorgente	Gr. Sorg. Medio Tirino	Tirino	Pescara	*
		GS-S22(s)	sorgente	Gr. Sorg. Basso Tirino	Tirino	Pescara	*
		GS-S23(s)	sorgente	Sorg. Stiffe	Aterno	Pescara	*
		GS-S24(s)	sorgente	Gr. Sorg. S. Calisto	Canestro	Pescara	*
		GS-S25(s)	sorgente	Sorg. Dalichiuso	Canestro	Pescara	*
	Monte Sirente	GS-S26(s)	sorgente	Gr. Sorg. S. Liberata e Capo Pescara	Pescara	Pescara	*
		GS-S27(s)	sorgente	Gr. Sorg. Molina Aterno	Aterno	Pescara	*
		GS-S28(s)	sorgente	Gr. Sorg. di Raiano	Aterno	Pescara	*
		GS-S29(s)	sorgente	Gr. Sorg. Fontana Grande	Fucino	Liri- Garigliano	*
	Colle della	ML1(s)	sorgente	Gr. Sorg. Lavino - De Contra	Lavino	Pescara	*
	Civita	ML2(s)	sorgente	Gr. Sorg. Val di Foro	Foro	Foro	*
Monti della		ML3(p)	pozzo	Campo-pozzi Foro	Foro	Foro	*
Maiella	Monte	ML4(s)	sorgente	Gr. Sorg. Del Verde	Verde	Sangro	*
	Acquaviva	ML5(s)	sorgente	Gr. Sorg. Acquevive	Aventino	Sangro	*
		ML6(s)	sorgente	Gr. Sorg. Orta	Orta	Pescara	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		ML7(s)	sorgente	Gr. Sorg. La Morgia	T. Capo Lavino	Pescara	*
		ML8(s)	sorgente	Gr. Sorg. delle Tre Grotte	V.ne Tre Grotte	Sangro	*
		ML9(s)	sorgente	Gr. Sorg. Rava Avellana	Ofento	Pescara	*
	Monte Morrone s.s.	MR1(s)	sorgente	Gr. Sorg. Giardino	Giardino	Pescara	*
Monte	Monte Rotondo	MR2(s)	sorgente	Gr. Sorg. Popoli	Pescara	Pescara	*
Morrone		MR3(p)	pozzo	Campo-pozzi Colle S. Angelo	Pescara	Pescara	*
	Kotondo	MR4(s)	sorgente	Gr. Sorg. II Salto ENEL	Pescara	Pescara	*
		PR1(s)	sorgente	Gr. Sorg. Capo di Fiume	Aventino	Sangro	*
Monte Porrara	Monte Porrara	PR2(p)	pozzo	Campo-pozzi Palena (Capo di Fiume)	Aventino	Sangro	*
rionte i oriara	S.S.	PR3(p)	pozzo	Campo-pozzi Pizzo di Coda	F.so La Vera (Aventino	Sangro	*
	M. Rotella s.s.	RT1(s)	sorgente	Gr. Sorg. Acqua Suriente	Sangro	Sangro	*
Monte Rotella	-M. Arazzecca	RT2(p)	pozzo	Campo-pozzi Acqua Suriente	Sangro	Sangro	*
		G-G1(s)	sorgente	Gr. Sorg. Capolaia	Capolaia	Pescara	*
Monte Genzana - Monte Greco	M. Genzana s.l.	G-G2(s)	sorgente	Gr. Sorg. Capo d'Acqua di Bugnara	Sagittario	Pescara	*
		G-G3(s)	sorgente	Gr. Sorg. Gizio	Gizio	Pescara	*
	M. Godi s.l.	MS1(s)	sorgente	Sorg. La Marca	Tasso - Sagittario	Pescara	*
	M. Godi S.I.	MS2(s)	sorgente	Sorg. Capo d'Acqua	Tasso - Sagittario	Pescara	*
	M. Marsicano s.l.	MS3(s)	sorgente	Gr. Sorg. Tasso	Tasso - Sagittario	Pescara	*
Monte		MS4(s)	sorgente	Gr. Sorg. Villalago - S. Domenico	Sagittario	Pescara	*
Marsicano		MS5(s)	sorgente	Gr. Sorg. Cavuto	Sagittario	Pescara	*
		MS6(s)	sorgente	Sorg. S. Sebastiano	Giovenco	Liri - Garigliano	*
		MS7(s)	sorgente	Sorg. Ferriera	Giovenco	Liri - Garigliano	*
		MS8(s)	sorgente	Gr. Sorg. Villetta Barrea	Sangro	Sangro	*
		C-M1(s)	sorgente	Gr. Sorg. Venere	Fucino	Liri- Garigliano	*
		C-M2(s)	sorgente	Gr. Sorg. Ortucchio	Fucino	Liri- Garigliano	*
	M. Pianeccia - M. Fontecchia	C-M3(p)	pozzo	Campo-pozzi Trasacco	Fucino	Liri- Garigliano	*
		C-M4(s)	sorgente	Gr. Sorg. Trasacco	Fucino	Liri- Garigliano	*
		C-M5(p)	pozzo	Campo-pozzi Pescasseroli	Sangro	Sangro	*
Monte		C-M6(s)	sorgente	Sorg. Vena Cionca	Turano	Tevere	*
Cornacchia- Monti La Meta		C-M7(s)	sorgente	Galleria F.S. Colli di Monte Bove	Turano	Tevere	*
	M. Carseolani	C-M8(s)	sorgente	Sorg. Galleria F.S. Sante Marie	Imele	Tevere	*
	- M. Cornacchia -	C-M10(s)	sorgente	Risorgenza dell'Imele	Imele	Tevere	*
	Monti della Meta	C-M11(p)	pozzo	Pozzo Micron	Fucino	Liri- Garigliano	*
		C-M12(s)	sorgente	Gr. Sorg. Val Fondillo	Sangro	Sangro	*
		C-M13(s)	sorgente	Gr. Sorg. Scerto	Scerto	Sangro	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		C-M14(s)	sorgente	Sorg. Val Jannanghera	Sangro	Sangro	*
	La Meta	C-M15(s)	sorgente	Gr. Sorg. delle Donne	Sangro	Sangro	*
		C-M16(s)	sorgente	Sorg. Rio Torto	Rio Torto	Sangro	*
		C-M17(s)	sorgente	Gr. Sorg. Le Forme	Rio Iemmare	Volturno	*
		C-M18(s)	sez. in alveo	Sez. in alveo Fossato di Rosa	Fossato di Rosa	Fucino	**
		C-M19(s)	sorgente	Sorg. Madonna Candelecchia	Fossato di Rosa	Fucino	**
	_	C-M20(s)	sorgente	Sorg. Fonte S. Leonardo	Fossato di Rosa	Fucino	**
		C-M21(s)	sez. in alveo	Sez. in alveo Fossato di Rosa	Fossato di Rosa	Fucino	**
		C-M22(s)	sez. in alveo	Sez. in alveo Fossato di Rosa	Fossato di Rosa	Fucino	**
		S-E-C1(s)	sorgente	Sorg. Verrecchie	Imele	Tevere	*
		S-E-C2(s)	sorgente	Gr. Sorg. del Liri	Liri	Liri- Garigliano	*
	M. Cimbruini	S-E-C3(s)	sorgente	Sorg. Capo di Rio	Liri	Liri- Garigliano	*
Monti Simbruini -	M. Simbruini (Alta Valle Roveto)	S-E-C4(s)	sorgente	Sorg. Rio Sonno	Liri	Liri- Garigliano	*
Monti Ernici - Monte Cairo	Koveto)	S-E-C5(s)	sorgente	Gr. Sorg. Rianza	Liri	Liri- Garigliano	*
		S-E-C6(s)	sorgente	Sorg. La Sponga	Liri	Liri- Garigliano	*
		S-E-C7(s)	sorgente	Gr. Sorg. Zompo lo Schioppo	Liri	Liri- Garigliano	*
	M. Ernici (Pizzo Deta)	S-E-C8(s)	sorgente	Gr. Sorg. Mulino Rio	Liri	Liri- Garigliano	*
Monte Velino - Monte Giano	M. Velino-M. Nuria	V-G-N1(p)	pozzo	Campo-pozzi Rio Pago	S. Potito (Fucino)	Liri- Garigliano	*
- Monte Nuria	Tre Monti	V-G-N2(p)	pozzo	Campo-pozzi Bussi di Celano	Fucino	Liri- Garigliano	*
		TR1(p)	pozzo	Pozzo Metalstampa S.p.A.	Tronto	Tronto	*
		TR2(p)	pozzo	Pozzo Salpi 1 - Salumi	Tronto	Tronto	*
		TR3(p)	pozzo	Pozzo Samica Calcestruzzi e inerti	Tronto	Tronto	*
		TR4(p)	pozzo	Pozzo Fo.Met.a.l Sofer - raffineria alluminio	Tronto	Tronto	*
		TR5(p)	pozzo	Pozzo YKK Fastners	Tronto	Tronto	**
		TR7(p)	pozzo	Pozzo Distributore Esso	Tronto	Tronto	***
Piana del Tronto	_	TR8(p)	pozzo	Pozzo Vivaio De Angelis	Tronto	Tronto	**
		TR9(p)	pozzo	Pozzo Eurotechno	Tronto	Tronto	**
		TR10(p)	pozzo	Pozzo Tommolino Elvezia	Tronto	Tronto	**
		TR11(p)	pozzo	Pozzo Giorgetti Eva	Tronto	Tronto	**
		TR12(p)	pozzo	Pozzo Strada Bonifica Tronto I	Tronto	Tronto	***
		TR13(p)	pozzo	Pozzo Strada Bonifica Tronto II	Tronto	Tronto	***
		TR14(p)	pozzo	Pozzo So.ca.bi. S.r.l.	Tronto	Tronto	**
		TR15(p)	pozzo	Pozzo Strada Bonifica Tronto III	Tronto	Tronto	***
		TR16(p)	pozzo	Pozzo Petrolpicena	Tronto	Tronto	**

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		TR17(p)	pozzo	Pozzo Strada Bonifica IV	Tronto	Tronto	***
		TR18(p)	pozzo	Pozzo Cardola	Tronto	Tronto	**
		TR19(p)	pozzo	Pozzo Valle cupa	Tronto	Tronto	**
		TR20(p)	pozzo	Pozzo Strada Bonifica V	Tronto	Tronto	***
		TR21(p)	pozzo	Pozzo Case Marconi	Tronto	Tronto	**
		TR22(p)	pozzo	Pozzo Autolavaggio Biancone	Tronto	Tronto	***
		TR23(p)	pozzo	Pozzo Azienda Agricola Ciclamino	Tronto	Tronto	***
		TR24(p)	pozzo	Pozzo Via Trento	Tronto	Tronto	***
		TR25(p)	pozzo	Pozzo Comando Polizia Municipale	Tronto	Tronto	***
		VI1(p)	pozzo	Pozzo Vemaco (in sostituzione di Tribuiani)	Vibrata	Vibrata	*
		VI2(p)	pozzo	Pozzo Di Pietro Perforazioni	Vibrata	Vibrata	*
		VI3(p)	pozzo	Pozzo Canile di Alba Adriatica	Vibrata	Vibrata	*
		VI4(p)	pozzo	Pozzo Vivaio Granchielli	Vibrata	Vibrata	*
		VI5(p)	pozzo	Pozzo Metal Service (in sostituz. di Grafitex)	Vibrata	Vibrata	*
		VI6(p)	pozzo	Pozzo cimitero di Nereto	Vibrata	Vibrata	*
		VI7(p)	pozzo	Pozzo Tecnica Edil s.r.l.	Vibrata	Vibrata	*
		VI8(p)	pozzo	Pozzo Venturini Flaviano	Vibrata	Vibrata	***
Piana del Vibrata	_	VI9(p)	pozzo	Pozzo Faenza Alfio	Vibrata	Vibrata	***
		VI11(p)	pozzo	Pozzo Lupi Raffaele	Vibrata	Vibrata	**
		VI12(p)	pozzo	Pozzo Ventili Roberto	Vibrata	Vibrata	***
		VI14(p)	pozzo	Pozzo Mariani	Vibrata	Vibrata	***
		VI15(p)	pozzo	Pozzo Giovanninni	Vibrata	Vibrata	**
		VI17(p)	pozzo	Pozzo Paoletti	Vibrata	Vibrata	**
		VI19(p) VI21(p)	pozzo	Pozzo Paolini Dino Pozzo Di Luca	Vibrata Vibrata	Vibrata Vibrata	***
		VI22(p)	pozzo	Giovanni Pozzo Pantoli Carino	Vibrata	Vibrata	**
		VI23(p)	pozzo	Pozzo Antonini Silvio	Vibrata	Vibrata	***
		VI24(p)	pozzo	Pozzo Di Monte Rita	Vibrata	Vibrata	***
		VI26(p)	pozzo	Pozzo Viviani Luigi	Vibrata	Vibrata	**
		SN1(p)	pozzo	Pozzo Dimaresine	Salinello	Salinello	*
		SN2(p)	pozzo	Pozzo Co.Stra.M. s.r.l.	Salinello	Salinello	*
		SN3(p)	pozzo	Pozzo LAS mobili	Salinello	Salinello	*
Piana del		SN4(p)	pozzo	Pozzo Circolo tennis Tortoreto	Salinello	Salinello	**
Salinello	_	SN5(p)	pozzo	Pozzo Eurogarden Vivaio Rossini	Salinello	Salinello	**
		SN6(p)	pozzo	Pozzo Vaccarini Giuseppe	Salinello	Salinello	**
		SN7(p)	pozzo	Pozzo Case Di Domenico	Salinello	Salinello	***

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		SN8(p)	pozzo	Pozzo Ciprietti	Salinello	Salinello	***
		SN9(p)	pozzo	Pozzo Di Pietro Serafino	Salinello	Salinello	***
		SN10(p)	pozzo	Pozzo Luciani Franco	Salinello	Salinello	***
		SN15(p)	pozzo	Pozzo Proficuo Domenico	Salinello	Salinello	***
		TO1(p)	pozzo	Pozzo Camping Stork	Tordino	Tordino	*
		TO2(p)	pozzo	Pozzo Colabeton	Tordino	Tordino	*
		TO3(p)	pozzo	Pozzo Concresud Prefabbricati	Tordino	Tordino	*
		TO4(p)	pozzo	Pozzo PlantitaliaPiantine s.a.s. vivaio	Tordino	Tordino	*
		TO5(p)	pozzo	Pozzo Amadori (in sostituz. di Edilstrade)	Tordino	Tordino	*
		TO6(p)	pozzo	Pozzo Tercal s.r.l. Calcestruzzi Preconfezionati	Tordino	Tordino	*
		TO7(p)	pozzo	Pozzo Scatolificio Florindo Nepa	Tordino	Tordino	*
		TO8(p)	pozzo	Pozzo Cappa Prefabbricati	Tordino	Tordino	*
		TO9(s)	sorgente	Sorg. Bonaduce	Tordino	Tordino	***
Piana del Tordino	_	TO11(p)	pozzo	Pozzo Spada Mario	Tordino	Tordino	**
		TO12(p)	pozzo	Pozzo Camping Tam Tam	Tordino	Tordino	**
		TO14(s)	sorgente	Sorg. Matteucci	Tordino	Tordino	***
		TO15(p)	pozzo	Pozzo Traversa Parere	Tordino	Tordino	***
		TO16(p)	pozzo	Pozzo Case di Trento	Tordino	Tordino	***
		TO19(p)	pozzo	Pozzo Marcattili Roberto	Tordino	Tordino	**
		TO20(p)	pozzo	Pozzo Agip S.S.80 Km 43.880	Tordino	Tordino	***
		TO25(p)	pozzo	Pozzo D'Angelantonio Biagio	Tordino	Tordino	***
		TO26(p)	pozzo	Pozzo Vivaio Casone	Tordino	Tordino	***
		TO27(s)	sorgente	Sorg. Fonte Ciotti	Tordino	Tordino	***
		TO28bis(p)	pozzo	Pozzo Case Cerulli	Tordino	Tordino	**
		VO1(p)	pozzo	Pozzo Eurocamping (in sost. di Camping Arcobaleno)	Vomano	Vomano	*
		VO2(p)	pozzo	Pozzo LaFarge Calcestruzzi	Vomano	Vomano	*
Piana del Vomano		VO3(p)	pozzo	Campo-pozzi Vomano - Acquedotto	Vomano	Vomano	*
	_	VO4(p)	pozzo	Pozzo Italprefabbricati S.p.A.	Vomano	Vomano	*
		VO5(p)	pozzo	Pozzo SicaBeton S.p.A.	Vomano	Vomano	*
		VO6(p)	pozzo	Pozzo Edilvomano Calcestruzzi	Vomano	Vomano	*
		VO7(p)	pozzo	Pozzo ITV (in sostituz. di Precompressi Abruzzo)	Vomano	Vomano	*
		VO9(p)	pozzo	Pozzo Marini Luigi	Vomano	Vomano	***

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
-		VO12(p)	pozzo	Pozzo Vivaio "Vomano Plant"	Vomano	Vomano	***
		VO13(p)	pozzo	Pozzo Di Giovannantonio Pasquale	Vomano	Vomano	***
		VO15(p)	pozzo	Pozzo Savini Ferdinando	Vomano	Vomano	***
		VO16(p)	pozzo	Pozzo Galli Giuseppe	Vomano	Vomano	**
		VO17(p)	pozzo	Pozzo Lago "El Caribe"	Vomano	Vomano	**
		VO18(p)	pozzo	Pozzo Distrib. Agip-Fuel	Vomano	Vomano	***
		VO19(p)	pozzo	Pozzo Ristorante "Caminetto"	Vomano	Vomano	***
		VO20(p)	pozzo	Pozzo Di Donato Domenico	Vomano	Vomano	**
		VO21(p)	pozzo	Pozzo Di Domenico Guido	Vomano	Vomano	**
		VO23 (p)	pozzo	Pozzo Az.Agr. Barba	Vomano	Vomano	**
		VO24(p)	pozzo	Pozzo D'Elpidio Amalia	Vomano	Vomano	***
	Piana del Piomba	SL1(p)	pozzo	Pozzo Saline Materiali per l'Edilizia - Montesilvano	Piomba	Piomba	*
		SL2(p)	pozzo	Pozzo Italmarmi (in sostituz. di Progetto Verde Vivaio Piante)	Saline	Saline	*
		SL3(p)	pozzo	Pozzo IMALAI s.n.c	Saline	Saline	*
	Piana del	SL4(p)	pozzo	Pozzo Adria Bitumi - Montesilvano	Saline	Saline	*
		SL5(p)	pozzo	Pozzo FDM - F.lli Delle Monache s.n.c Cappelle sul Tavo	Saline	Saline	*
		SL12bis(p)	pozzo	Pozzo Masseria Cataldi	Saline	Saline	***
	Saline	SL13(p)	pozzo	Pozzo Casa_popolare	Saline	Saline	**
Piana del		SL14(p)	pozzo	Pozzo Condominio Via di Vittorio	Saline	Saline	**
Saline-Piomba		SL15(p)	pozzo	Pozzo Serafini Antonio	Saline	Saline	**
		SL20(p)	pozzo	Pozzo Di Giacomo autotrasporti	Saline	Saline	***
		SL24(p)	pozzo	Pozzo Tesoro 1	Saline	Saline	***
		SL25(p)	pozzo	Pozzo Tesoro 2	Saline	Saline	***
		SL34(p)	pozzo	Pozzo Elettromeccanica Di Simone Erne	Saline	Saline	**
		SL35(p)	pozzo	Pozzo Unicentro Sas	Saline	Saline	**
		SL6(p)	pozzo	Pozzo Angiolina Ferretti (in sost. di Dasco)	Fino	Saline	*
	Piana del Fino	SL7(p)	pozzo	Pozzo Az. Agricola Cancelli	Fino	Saline	*
		SL8(p)	pozzo	Pozzo Manufatti in cemento di Pavone B Elice	Fino	Saline	*
	Piana del Tavo	SL9(p)	pozzo	Pozzo Brioni Roman Fashion s.r.l Collecorvino (PE)	Tavo	Saline	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		SL10(p)	pozzo	Pozzo Vivaio Di Lorenzo - Moscufo (PE)	Tavo	Saline	*
		SL11(p)	pozzo	Pozzo Dell'Orso (in sost. di Lafarge)	Tavo	Saline	*
		SL12(p)	pozzo	Pozzo Musa Antonio (in sostituzione di Pozzo CLENT s.n.c Moscufo (PE))	Tavo	Saline	*
		SL28(p)	pozzo	Pozzo Terra Rossa	Tavo	Saline	**
		SL29(p)	pozzo	Pozzo Classic cars	Tavo	Saline	***
		SL31(p)	pozzo	Pozzo Stilman	Tavo	Saline	**
		SL33(p)	pozzo	Pozzo SS Val di Tavo II	Tavo	Saline	***
		PE1(p)	pozzo	Pozzo Lafarge Adria Sebina S.p.A - Pescara	Pescara	Pescara	*
		PE2(p)	pozzo	Pozzo Di Sario - Pescara	Pescara	Pescara	*
		PE3(p)	pozzo	Pozzo Tubispa - Sambuceto di S. Giovanni Teatino (CH)	Pescara	Pescara	*
		PE4(p)	pozzo	Pozzo Dayco Europa s.r.l Stabilimento di Chieti Scalo	Pescara	Pescara	*
Piana del		PE5(p)	pozzo	Pozzo Prefabbricati T. Troiano - Cepagatti - Villanova (PE)	Pescara	Pescara	*
Pescara	_	PE6(p)	pozzo	Pozzo Vivai della Pescara	Pescara	Pescara	*
		PE7(p)	pozzo	Pozzo Dayco Europa s.r.l Stabilimento di Manoppello	Pescara	Pescara	*
		PE8(p)	pozzo	Pozzo Diodato Fioricoltura - Brecciarola (CH)	Pescara	Pescara	*
		PE12(p)	pozzo	Pozzo Distributore Q8	Pescara	Pescara	**
		PE13(p)	pozzo	Pozzo Distributore Agip	Pescara	Pescara	**
		PE14(p)	pozzo	Pozzo Distributore Api	Pescara	Pescara	**
		PE15(p)	pozzo	Pozzo Distributore Agip	Pescara	Pescara	**
		FO1(p)	pozzo	Pozzo Corrado Marmi - Lav. Marmi e Graniti - Francavilla al Mare (CH) - Contrada Foro	Foro	Foro	*
Piana del Foro	_	FO2(p)	pozzo	Pozzo Birindelli Piante - Francavilla al Mare (CH)	Foro	Foro	*
		FO3(p)	pozzo	Pozzo Paolucci Nicola Manufatti in cemento - Miglianico (CH)	Foro	Foro	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		FO4(p)	pozzo	Pozzo Az. Agricola Ferrante- Pantaleone - Miglianico (CH)	Foro	Foro	*
		FO5(p)	pozzo	Pozzo F.lli Adezio s.n.c.	Foro	Foro	*
		FO6bis(p)	pozzo	Pozzo Autolavaggio	Foro	Foro	**
		FO7(p)	pozzo	Pozzo 2	Foro	Foro	***
		FO8(p)	pozzo	Pozzo RimaCat	Foro	Foro	***
		FO9(p)	pozzo	Pozzo Garden Peco	Foro	Foro	**
		FO10(p)	pozzo	Pozzo San Giovanni	Foro	Foro	***
		FO11(p)	pozzo	Pozzo San Giovanni II	Foro	Foro	**
		FO12(p)	pozzo	Pozzo Palmitesta Rocco	Foro	Foro	**
		FO13(p)	pozzo	Pozzo Cerreto	Foro	Foro	**
		FO14(p)	pozzo	Pozzo C.da Piane San Pantaleone	Foro	Foro	**
		FO15(p)	pozzo	Pozzo C.da Piane San Pantaleone II	Foro	Foro	**
		FO16(p)	pozzo	Pozzo C.da Cerreto inferiore	Foro	Foro	**
		FO17(p)	pozzo	Pozzo C.da Cerreto inferiore II	Foro	Foro	**
		SA1(p)	pozzo	Pozzo Baya Verde Sport Village - Fossacesia Marina	Sangro	Sangro	*
		SA2(p)	pozzo	Pozzo S.M.I Paglieta (CH)	Sangro	Sangro	*
		SA3(p)	pozzo	Pozzo Di Lallo (in sostituz. di Avicola Di Pentima - Paglieta (CH))	Sangro	Sangro	*
		SA4(p)	pozzo	Pozzo Vibro - Sangro di Perspicace Alessandro (s.n.c.) - Fossacesia (CH)	Sangro	Sangro	*
		SA5(p)	pozzo	Pozzo Capsu s.r.l. - Paglieta (CH)	Sangro	Sangro	*
Piana del		SA6(p)	pozzo	Pozzo D'Amico (in sostituz. Mangimi Menna - Atessa (CH)	Sangro	Sangro	*
Basso Sangro	_	SA7(p)	pozzo	Pozzo TIESSE (in sostituz. Edil Sangro - Manufatti - Atessa (CH))	Sangro	Sangro	*
		SA8(p)	pozzo	Pozzo Giosa arredamenti (in sostituz. Di Nardo Nicolino - Piane d'Archi (CH))	Sangro	Sangro	*
		SA9(p)	pozzo	Pozzo Avidel industria Avicola - Fossacesia (CH)	Sangro	Sangro	*
		SA10(p)	pozzo	Pozzo Spiaggia Fossacesia	Sangro	Sangro	***
		SA11(p)	pozzo	Pozzo Le Grotte	Sangro	Sangro	***
		SA12(p)	pozzo	Pozzo Romano Rocco	Sangro	Sangro	***
		SA13(p)	pozzo	Pozzo Agriturismo Peschiera	Sangro	Sangro	***

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		SA14(s)	sorgente	Sorg. Fonte Antuoni	Sangro	Sangro	***
		SA16(p)	pozzo	Pozzo Prato Piccolo	Sangro	Sangro	**
		SA18(p)	pozzo	Pozzo S.Egidio	Sangro	Sangro	***
		SA19(p)	pozzo	Pozzo Castel di Septe	Sangro	Sangro	***
		SA20(p)	pozzo	Pozzo Vivaio- Fonte Sinaglia	Sangro	Sangro	***
		SA21(p)	pozzo	Pozzo Autolavaggio Moby Dick	Sangro	Sangro	**
		SA22(p)	pozzo	Pozzo Radio Delta1	Sangro	Sangro	**
		SA25(p)	pozzo	Pozzo Giarrocca Alfredo	Sangro	Sangro	**
		SA26(p)	pozzo	Pozzo Rossi Nicola	Sangro	Sangro	***
		SA27(p)	pozzo	Pozzo Giordano Antonio	Sangro	Sangro	**
		SA28(p)	pozzo	Pozzo Di Toro Domenico	Sangro	Sangro	**
		SI1(p)	pozzo	Pozzo Cantina Casal Bordino	Sinello	Sinello	*
		SI2(p)	pozzo	Pozzo Di Paolo Amedeo	Sinello	Sinello	**
		SI3(p)	pozzo	Pozzo COTIR	Sinello	Sinello	**
		SI4(p)	pozzo	Pozzo Cantalupo	Sinello	Sinello	***
		SI5(p)	pozzo	Pozzo S. Pietro Sud	Sinello	Sinello	**
Piana del		SI6(p)	pozzo	Pozzo Fonte Murata 1	Sinello	Sinello	**
Sinello	_	SI7(p)	pozzo	Pozzo Fonte Murata 2	Sinello	Sinello	**
		SI8(p)	pozzo	Pozzo Fonte Murata 3	Sinello	Sinello	**
		SI9(p)	pozzo	Pozzo Laghi del Sole	Sinello	Sinello	**
		SI10(p)	pozzo	Pozzo Vivaio Rio Verde	Sinello	Sinello	**
		SI11(p)	pozzo	Pozzo Mobili La Penna	Sinello	Sinello	**
		SI12(p)	pozzo	Pozzo Teknolamiere	Sinello	Sinello	**
		TG1(p)	pozzo	Pozzo Via Rostagno- D'Amelio - San Salvo (CH) (in sost. di Campo sportivo San Salvo)	Trigno	Trigno	*
		TG2(p)	pozzo	Pozzo CONSORZIO DI BONIFICA SUD P22	Trigno	Trigno	*
Piana del Trigno	_	TG3(p)	pozzo	Pozzo CONSORZIO DI BONIFICA SUD Pozzo E (in sost. del il Pozzo P11)	Trigno	Trigno	*
		TG4(p)	pozzo	Pozzo Q8	Trigno	Trigno	***
		TG5(p)	pozzo	Pozzo Marrollo	Trigno	Trigno	**
		TG6(p)	pozzo	Pozzo IP Girasole	Trigno	Trigno	**
		TG8(p)	pozzo	Pozzo Argentieri Graziella	Trigno	Trigno	***
		TG11(p)	pozzo	Pozzo Bosco Motticce II	Trigno	Trigno	**
		TG12(p)	pozzo	Pozzo Consorzio di Bonifica II	Trigno	Trigno	**

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		TG13(p)	pozzo	Pozzo Consorzio di Bonifica III	Trigno	Trigno	***
		TG15(p)	pozzo	Pozzo Travaglini Carmine	Trigno	Trigno	***
		TG16(p)	pozzo	Pozzo Piano della Padula I	Trigno	Trigno	**
		TG17(p)	pozzo	Pozzo Tascone Felice	Trigno	Trigno	***
		TG19(p)	pozzo	Pozzo Centorami Nicola	Trigno	Trigno	***
		TG20(p)	pozzo	Pozzo Grassi Nicolino	Trigno	Trigno	**
		TG21bis(p)	pozzo	Pozzo Piano della Padula III	Trigno	Trigno	***
		TG22(p)	pozzo	Pozzo Autolavaggio Limone	Trigno	Trigno	**
		TG23(p)	pozzo	Pozzo Colantonio Giacinta	Trigno	Trigno	***
		AVA8(s)	sorgente	Sorg. Vetoio	Aterno	Pescara	**
		AVA9(p)	pozzo	Pozzo Marchetti	Aterno	Pescara	***
		AVA10(p)	pozzo	Pozzo Galli Giovanni	Aterno	Pescara	***
		AVA11(p)	pozzo	Pozzo Reiss Romoli	Aterno	Pescara	**
		AVA12(p)	pozzo	Pozzo Centicolella I	Aterno	Pescara	***
		AVA13(p)	pozzo	Pozzo Centicolella II	Aterno	Pescara	**
		AVA14(p)	pozzo	Pozzo Campo di Pile	Raio	Pescara	***
		AVA15(p)	pozzo	Pozzo Costruzioni Meccaniche	Raio	Pescara	**
		AVA16(p)	pozzo	Pozzo Elettromeccanica Aquilana	Raio	Pescara	***
		AVA17(p)	pozzo	Pozzo Raio	Raio	Pescara	***
		AVA20(p)	pozzo	Pozzo Di Cresce Rocco	Raio	Pescara	**
		AVA21(p)	pozzo	Pozzo Larnicelli Maria Teresa	Raio	Pescara	**
		AVA24(p)	pozzo	Pozzo Retica Francesco	Raio	Pescara	***
		AVA25(p)	pozzo	Pozzo Irti Fabio	Raio	Pescara	***
		SU1(p)	pozzo	Pozzo Palombizio (in sostituz. Di Lafarge Gessi S.p.A)	Sagittario	Pescara	*
		SU2(p)	pozzo	Pozzo Ceramica SABA (in sostituz. di Comune di Raiano S.A.C.A.)	Sagittario	Pescara	*
Piana di Sulmona	_	SU3(p)	pozzo	Pozzo Agriturismo Cincarrini (in sostituz. di Sema s.r.l ingrosso prodotti pulizia casa)	Sagittario	Pescara	*
		SU4(p)	pozzo	Pozzo Giallorenzo (in sostituz. di Ist. Prof. di Stato per Agr.ra e Amb.)	Sagittario	Pescara	*
		SU4(s)	sorgente	Gr. Sorg. Acqua Chiara	Sagittario	Pescara	*
		SU5(s)	sorgente	Gr. Sorg. Sagittario	Sagittario	Pescara	*
		SU6(s)	sorgente	Sorg. Lavatoio Corfinio	Aterno	Pescara	***

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		SU7(s)	sorgente	Sorg. Lavatoio Galli-Zugaro	Aterno	Pescara	***
		SU8(s)	sorgente	Sorg. Noce della Corte	Aterno	Pescara	***
		SU9(s)	sorgente	Sorg. La Fontuccia	Aterno	Pescara	**
		SU10(p)	pozzo	Pozzo Consorzio ANSAPE	Aterno	Pescara	**
		SU12(p)	pozzo	Pozzo S.A.I.P. S.R.L.	Aterno	Pescara	**
		SU13(p)	pozzo	Pozzo Cava Corfinio	Aterno	Pescara	***
		SU14(p)	pozzo	Pozzo Ristorante Oasi	Aterno	Pescara	**
		SU15(p)	pozzo	Pozzo FO.CE.IT	Aterno	Pescara	**
		SU16(s)	sorgente	Sorg. Abate	Aterno	Pescara	***
		SU17(p)	pozzo	Pozzo Distributore Total	Aterno	Pescara	**
		SU18(p)	pozzo	Pozzo Ristorante Da Mario	Aterno	Pescara	***
		SU19(p)	pozzo	Pozzo Falegnameria Donadei	Aterno	Pescara	**
		SU23(p)	pozzo	Pozzo Pizzola Paolo	Aterno	Pescara	**
		SU24(s)	sorgente	Sorg. Fonte San Giovanni	Aterno	Pescara	***
		SU25(p)	pozzo	Pozzo Arpa	Aterno	Pescara	***
		TIR2(p)	pozzo	Pozzo Del Rossi Nicola - Bussi sul Tirino	Tirino	Pescara	*
		TIR3(s)	sorgente	Sorg. Presciano	Tirino	Pescara	**
		TIR4(p)	pozzo	Pozzo 2	Tirino	Pescara	***
		TIR5(p)	pozzo	Pozzo3	Tirino	Pescara	***
Piana del		TIR6(p)	pozzo	Piezometro Solvay	Tirino	Pescara	**
Tirino		TIR7(p)	pozzo	Pozzo Pantano I	Tirino	Pescara	***
		TIR8(p)	pozzo	Pozzo Pantano II	Tirino	Pescara	***
		TIR9(p)	pozzo	Pozzo Madonna del Piano I Pozzo Madonna	Tirino	Pescara	***
		TIR10(p)	pozzo	del Piano II	Tirino	Pescara	***
		TIR11(p)	pozzo	Pozzo S. Silvestro	Tirino	Pescara	***
		TIR12(p)	pozzo	Pozzo Il Piano	Tirino	Pescara	***
		FU1(p)	pozzo	Pozzo Fucino Strada 13 - ARSSA	Fucino	Liri- Garigliano	*
		FU2(p)	pozzo	Pozzo IPSAA Avezzano	Fucino	Liri- Garigliano	*
		FU3(p)	pozzo	Pozzo La Punta	Fucino	Liri- Garigliano	***
		FU4(p)	pozzo	Pozzo Strada 27	Fucino	Liri- Garigliano	***
Piana del		FU5(p)	pozzo	Pozzo Strada 15	Fucino	Liri- Garigliano	***
Fucino e dell'Imele	_	FU6(p)	pozzo	Pozzo Strada 17	Fucino	Liri- Garigliano	***
		FU7(p) (°)	pozzo	Piezometro 1	Fucino	Liri- Garigliano	**
		FU8(p) (°)	pozzo	Piezometro 2	Fucino	Liri- Garigliano	**
		FU9(p) (°)	pozzo	Piezometro 3	Fucino	Liri- Garigliano	**
		FU10(p) (°)	pozzo	Piezometro 4	Fucino	Liri- Garigliano	**
		FU11(p) (°)	pozzo	Piezometro 5	Fucino	Liri- Garigliano	**

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

REGIONE ABRUZZO

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		FU12(p) (°)	pozzo	Piezometro 6	Fucino	Liri- Garigliano	**
		FU13(p) (°)	pozzo	Piezometro 7	Fucino	Liri- Garigliano	**
		FU14(p) (°)	pozzo	Piezometro 8	Fucino	Liri- Garigliano	**
		FU15(p) (°)	pozzo	Piezometro 9	Fucino	Liri- Garigliano	**
		FU16(p) (°)	pozzo	Piezometro 10	Fucino	Liri- Garigliano	**
		FU17(p) (°)	pozzo	Piezometro 11	Fucino	Liri- Garigliano	**
		FU18(p) (°)	pozzo	Piezometro 12	Fucino	Liri- Garigliano	**
		FU19(p) (°)	pozzo	Piezometro 13	Fucino	Liri- Garigliano	**
		FU20(p) (°)	pozzo	Piezometro 14	Fucino	Liri- Garigliano	**
		FU21(p) (°)	pozzo	Piezometro 15	Fucino	Liri- Garigliano	**
		IM2(p)	pozzo	Pozzo Caseificio Valentini	Imele	Tevere	***
		IM3(p)	pozzo	Pozzo Az. Agr. Di Clemente	Imele	Tevere	***
		IM4(p)	pozzo	Pozzo Sorgente	Imele	Tevere	***
		IM5(p)	pozzo	Pozzo Petriccone Fausto	Imele	Tevere	***
		CSA1(s)	sorgente	Gr. Sorg. Castel di Sangro	Sangro	Sangro	*
		CSA2(p)	pozzo	Campo-pozzi Prato Cardillo	Sangro	Sangro	*
		CSA3(p)	pozzo	Campo-pozzi S. Liberata (Lo Speno)	Sangro	Sangro	*
		CSA4(p)	pozzo	Campo-pozzi Rio	Sangro	Sangro	*
	_	CSA5(p)	pozzo	Pozzo Agip Castel di Sangro	Sangro	Sangro	***
Piana di Castel di		CSA6(p)	pozzo	Pozzo Orfanotrofio	Sangro	Sangro	**
Sangro		CSA7(s)	sorgente	Sorg. Cava	Sangro	Sangro	***
		CSA8(p)	pozzo	Pozzo Elettrauto Capretta Luca	Sangro	Sangro	**
		CSA9(s)	sorgente	Sorg. Fonte Milone	Sangro	Sangro	**
		CSA10(s)	sorgente	Sorg. Fontana Vittoria	Sangro	Sangro	**
		CSA11(s)	sorgente	Sorg. Fonte Recuna	Sangro	Sangro	**
		CSA12(s)	sorgente	Sorg. Fontana Villa Scontrone	Sangro	Sangro	**
		OR2(p)	pozzo	Pozzo Albergo Le Sequoie	Turano	Tevere	**
		OR3(p)	pozzo	Pozzo S. Panfilo	Turano	Tevere	***
		OR4(p)	pozzo	Pozzo Casa Bianca	Turano	Tevere	**
Piana di Oricola	_	OR5(p)	pozzo	Pozzo Vetreria Tecno Glass	Turano	Tevere	**
		OR6(p)	pozzo	Pozzo Luciani Marmi	Turano	Tevere	**
		OR7(p)	pozzo	Pozzo Ceramiche del Turano	Turano	Tevere	**
Piana dell'Alento	_	PE-FO3(p)	pozzo	Pozzo Comune di Francavilla al Mare - Campo Sportivo (Ex canile)	Alento	Alento	*
Colli Campanari	_	CC1(s)	sorgente	Gr. Sorg. Capo di Rio	Zittola	Sangro	*
Monte Pagano	_	PG1(s)	sorgente	Sorg. Majure	Sangro	Sangro	*

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpo idrico sotterraneo principale	Corpo idrico sotterraneo secondario	Sigla Punto d'acqua	Tipologia del punto d'acqua	Denominazione	Corso d'acqua	Bacino Imbrifero	Rete di monitoraggio
		S-P-V-C1(s)	sorgente	Sorg. Lami	T. Rasine	Sangro	*
	M. Secine	S-P-V-C2(s)	sorgente	Gr. Sorg. Santissimo	V.ne della Foce	Sangro	*
		S-P-V-C3(s)	sorgente	Gr. Sorg. Vallone della Castelletta	V.ne delle Castellett a	Sangro	*
Monte Secine	Monti Pizzi	S-P-V-C4(s)	sorgente	Sorg. Capo Vallone	V.ne Portella (Aventino	Sangro	*
Monte Vecchio - Monte		S-P-V-C5(s)	sorgente	Sorg. Acqua Scoperta	Rio Secco (Aventino)	Sangro	*
Castellano	M. Castellano	S-P-V-C6(s)	sorgente	Sorg. Cavallina	Rio Secco (Aventino)	Sangro	*
	- M. Vecchio	S-P-V-C7(s)	sorgente	Sorg. Della Cascata	Sangro	Sangro	*
		S-P-V-C8(s)	sorgente	Sorg. Ciabbotta	T. Verde	Sangro	*
	M. Castellano	S-P-V-C9(s)	sorgente	Gr. Sorg. Delle Candele	T. Verde	Sangro	*
		S-P-V-C10(s)	sorgente	Gr. Sorg. Surienze	T. Verde	Sangro	*
		CF-CA1(s)	sorgente	Gr. Sorg. Olmi	Rio Torto (F. Treste)	Trigno	*
		CF-CA2(s)	sorgente	Gr. Sorg. Sinello	Sinello	Sinello	*
Castel Fraiano - Colle	_	CF-CA3(s)	sorgente	Gr. Sorg. Sega Acqua	Sinello	Sinello	*
dell'Albero		CF-CA4(s)	sorgente	Sorg. La Spugna	V.ne del Molino	Sangro	*
		CF-CA5(s)	sorgente	Sorg. Cilmegno	Osento	Osento	*
		CF-CA6(s)	sorgente	Gr. Sorg. S. Onofrio	Osento	Osento	*
Pescara-Foro	_	PE-FO1(s)	sorgente	Sorg. Peschio	Alento- Foro	Alento- Foro	*
		FO-SA5(s)	sorgente	Sorg. Lago	Feltrino- Fontanelli	Feltrino- Fontanelli	*
Foro-Sangro	_	FO-SA6(s)	sorgente	Sorg. Santa Lucia	Sangro	Sangro	*
		FO-SA7(s)	sorgente	sorg. Iconi Gella	Feltrino	Feltrino	*
Sangro-		SA-SI1(s)	sorgente	sorg. Valle Cupa	F.so del Diavolo	Sangro- Osento	*
Sinelllo	_	SA-SI2(s)	sorgente	sorg. Fontana Vecchia	Sinello	Sinello	*

- * Stazioni della rete di monitoraggio della "fase conoscitiva" e della fase "a regime": monitoraggio qualiquantitativo
- ** Stazioni aggiunte nella rete di monitoraggio della fase "a regime": monitoraggio quali-quantitativo
- *** Stazioni aggiunte nella rete di monitoraggio della fase "a regime": monitoraggio quantitativo
- (°) Piezometri da realizzare

5.2.2 Definizione dello stato di qualità ambientale dei corpi idrici sotterranei

D.Lgs. 152/99 - Allegato 1 4.4 Classificazione Lo stato ambientale delle acque sotterranee è definito in base allo stato quantitativo e quello chimico. 4.4.1 Stato quantitativo Lo stato quantitativo dei corpi idrici sotterranei è definito da quattro classi così caratterizzate: Classe A L'impatto antropico è nullo o trascurabile con condizioni di equilibrio idrogeologico. Le estrazioni di acqua o alterazioni della velocità naturale di ravvenamento sono sostenibili sul lungo periodo. Classe B L'impatto antropico è ridotto, vi sono moderate condizioni di disequilibrio del bilancio idrico, senza che tuttavia ciò produca una condizione di sovrasfruttamento, consentendo un uso della risorsa e sostenibile sul lungo periodo.

PROGER S.P.A. ENEL. HYDRO D'APPOLONIA

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Classe C	Impatto antropico significativo con notevole incidenza dell'uso sulla disponibilità della risorsa evidenziata da rilevanti modificazioni agli indicatori generali sopraesposti (1).	
Classe D	Impatto antropico nullo o trascurabile, ma con presenza di complessi idrogeologici con intrinseche caratteristiche di scarsa potenzialità idrica.	

⁽¹⁾ nella valutazione quantitativa bisogna tener conto anche degli eventuali surplus incompatibili con la presenza di importanti strutture sotterranee preesistenti.

4.4.2 Stato chimico

Le classi chimiche dei corpi idrici sotterranei sono definite secondo il seguente schema:

Classe 1	Impatto antropico nullo o trascurabile con pregiate caratteristiche idrochimiche.
Classe 2	Impatto antropico ridotto e sostenibile sul lungo periodo e con buone caratteristiche idrochimiche.
Classe 3	Impatto antropico significativo e con caratteristiche idrochimiche generalmente buone, ma con alcuni segnali di compromissione.
Classe 4	Impatto antropico rilevante con caratteristiche idrochimiche scadenti.
Classe 0 (*)	Impatto antropico nullo o trascurabile ma con particolari facies idrochimiche naturali in concentrazioni al di sopra del valore della classe 3.

^(*) per la valutazione dell'origine endogena delle specie idrochimiche presenti dovranno essere considerate anche le caratteristiche chimico-fisiche delle acque.

Ai fini della classificazione chimica si utilizzerà il valore medio, rilevato per ogni parametro di base o addizionale nel periodo di riferimento. Le diverse classi qualitative vengono attribuite secondo lo schema di cui alla tabella 20, tenendo anche conto dei parametri e dei valori riportati alla Tabella 21. La classificazione è determinata dal valore di concentrazione peggiore riscontrato nelle analisi dei diversi parametri di base o dei parametri addizionali.

Tabella 20 - 'Classificazione chimica in base ai parametri di base" (1)

razena zo elacenteazione anninea in bace ai parametra a bace (1)						
	Unità di misura	Classe 1	Classe 2	Classe 3	Classe 4	Classe 0 (*)
Conducibilità elettrica	mS/cm (20°C)	≤400	≤2500	≤2500	>2500	>2500
Cloruri	μg/L	≤ 25	≤ 250	≤250	>250	>250
Manganese	μg/L	≤ 20	≤ 50	≤50	>50	>50
Ferro	μg/L	<50	<200	≤ 200	>200	>200
Nitrati	μg/L di NO ₃	≤ 5	≤ 25	≤50	> 50	
Solfati	μg/L di SO4	≤ 25	≤ 250	≤250	>250	>250
Ione ammonio	μg/L di NH4	≤ 0,05	≤ 0,5	≤0,5	>0,5	>0,5

⁽¹⁾se la presenza di tali sostanza è di origine naturale, così come appurato dalle regioni o dalle province autonome, verrà automaticamente attribuita la classe 0.

Tabella 21 - 'Parametri addizionali"

Inquinanti inorganici	μg/L	Inquinanti organici	μg/L
Alluminio	≤200	Composti alifatici alogenati totali	10
Antimonio	≤5	di cui:	
Argento	≤10	- 1,2-dicloroetano	3
Arsenico	≤10	Pesticidi totali (1)	0,5
Bario	≤2000	di cui:	
Berillio	≤4	- aldrin	0,03
Boro	≤1000	- dieldrin	0,03
Cadmio	≤5	- eptacloro	0,03
Cianuri	≤50	- eptacloro epossido	0,03
Cromo tot.	≤50	Altri pesticidi individuali	0,1
Cromo VI	≤5	Acrilamide	0,1
Ferro	≤200	Benzene	1
Fluoruri	≤1500	Cloruro di vinile	0,5
Mercurio	≤1	IPA totali (2)	0,1
Nichel	≤20	Benzo (a) pirene	0,01
Nitriti	≤500		
Piombo	≤10		

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

REGIONE ABRUZZO

PROGER S.P.A. ENFL HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Rame	≤1000	
Selenio	≤10	
Zinco	≤3000	

⁽¹⁾ in questo parametro sono compresi tutti i composti organici usati come biocidi (erbicidi, insetticidi, fungicidi, acaricidi, alghicidi, nematocidi ecc..);

Se la presenza di inquinanti inorganici in concentrazioni superiori a quelle di tabella 21 è di origine naturale verrà attribuita la classe 0 per la quale, di norma, non vengono previsti interventi di risanamento.

La presenza di inquinanti organici o inorganici con concentrazioni superiori a quelli del valore riportato nella tabella 21 determina la classificazione in classe 4.

Se gli inquinanti di tabella 21 non sono presenti o vengono rilevate concentrazioni al di sotto della soglia di rilevabilità indicata dai metodi analitici, il corpo idrico è classificato a seconda dei risultati relativi ai parametri di tabella 20.

Tranne nel caso della presenza naturale di sostanze inorganiche, il ritrovamento di questi inquinanti in concentrazioni significative vicine alla soglia indicata è comunque un segnale negativo di rischio per gli acquiferi interessati.....

4.4.3 Stato ambientale delle acque sotterranee

....La sovrapposizione delle classi chimiche (classi 1, 2, 3, 4, 0) e quantitative (classi A, B, C, D) definisce lo stato ambientale del corpo idrico sotterraneo così come indicato nella tabella 22 e permette di classificare i corpi idrici sotterranei.

Tabella 22 - 'Stato ambientale (quali-quantitativo) dei corpi idrici sotterranei"

Stato elevato	Stato buono	Stato sufficiente	Stato scadente	Stato particolare
1 – A	1 – B	3 – A	1 – C	0 – A
	2 – A	3 – B	2 – C	0 – B
	2 – B		3 – C	0 – C
			4 – C	0 – D
			4 – A	1 – D
			4 – B	2 – D
				3 – D
				4 – D

In assenza di serie storiche significative di dati dal punto di vista quantitativo, in una prima fase, la classificazione sarà basata sullo stato chimico delle risorse, ipotizzando, per la parte quantitativa, una classe C.

Qualora i corpi acquiferi individuati presentino al loro interno differenti condizioni dello stato si può procedere ad un ulteriore suddivisione che individui porzioni omogenee o aree discrete a differente stato di qualità sempre sulla base di quanto indicato in Tabella 22.

La Regione procede alla classificazione cartografica ed alla zonazione dei singoli corpi idrici sotterranei in base al rispettivo "stato". Sempre in base alla suddetta classificazione verranno pianificate le eventuali azioni di risanamento da adottare. Per quanto riquarda gli acquiferi che hanno uno stato naturale particolare pur non dovendo prevedere specifiche azioni di risanamento, deve comunque essere evitato un peggioramento dello stato chimico o un ulteriore impoverimento quantitativo.

Tale classificazione ha carattere temporaneo e dovrà essere progressivamente e periodicamente riaggiornata in base al raggiungimento degli obiettivi verificati tramite le attività di monitoraggio previste al punto 4.1.

La definizione dello stato di qualità ambientale dei corpi idrici significativi è stata effettuata secondo la metodologia di classificazione indicata dal D.Lqs. 152/99 (modificato ed integrato dal D.Lgs. 258/00), incrociando il risultato dello stato quantitativo e dello stato chimico dei corpi idrici sotterranei.

5.2.2.1 Risultati

Nel presente paragrafo sono stati riportati i principali risultati ottenuti dall'analisi dei dati raccolti durante la *fase conoscitiva* (2003-2005) e negli anni successivi fiino al 2009 del monitoraggio delle acque sotterranee. In particolare, sono discussi i risultati relativi allo stato quantitativo, chimico e di qualità ambientale dei corpi idrici sotterranei significativi.

Per un dettaglio maggiore si rimanda all'Allegato Monografico A1.4 "Classificazione dello

⁽²⁾ si intendono in questa classe i seguenti composti specifici: benzo(b)fluorantene, benzo(k)fluorantene, benzo(ghi)perilene, indeno(1,2,3-cd)pirene.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

stato di qualità ambientale dei corpi idrici sotterranei significativi" e relativa Appendice "Programma di Monitoraggio per il controllo delle acque sotterranee – Aggiornamento dei risultati ottenuti dalle attività di monitoraggio (gennaio 2009-dicembre 2009)", quest'ultima redatta da ARTA Abruzzo.

Per il dettaglio, invece, sulle attività di monitoraggio attivate dal gennaio 2010 si rimanda all'elaborato A1.10: "Individuazione dei corpi idrici sotterranei e analisi delle pressioni e del lilvello di rischio ai sensi del D.Lgs 30/2010 " e alle carte di piano allegati allo stesso elaborato.

Stato quantitativo

Lo "stato quantitativo dei corpi idrici sotterranei significativi" è stato determinato sulla base dei dati disponibili e sulla base di varie considerazioni.

In effetti, in base a quanto riportato al punto 4.4.3 dell'Allegato 1 del D.Lgs. 152/99, tutti i corpi idrici significativi ricadenti nel territorio abruzzese, non essendo dotati di serie storiche di dati, dovrebbero rientrare in classe C. Il che comporterebbe, qualsiasi fosse la classificazione dello stato chimico, uno stato ambientale scadente.

Nel caso dei corpi idrici sotterranei degli acquiferi carbonatici, è possibile però effettuare le seguenti osservazioni:

- la falda idrica sotterranea di base profonda è, per lo più, captata con opere a gravità che quindi non generano alcun tipo di sovrasfruttamento della falda;
- l'acquifero carbonatico ha una struttura "a catino" e pertanto si comporta come "serbatoio naturale di compenso", consentendo un uso dinamico della risorsa.

Anche per i corpi idrici sotterranei che si generano negli acquiferi fluvio-lacustri intramontani, è stato possibile effettuare diverse osservazioni:

- i corpi idrici risultano spesso copiosamente alimentati da apporti laterali provenienti dalla falda degli acquiferi carbonatici o dai corpi idrici superficiali;
- i pozzi sono relativamente pochi; infatti esistono consorzi per la distribuzione di acque per l'irrigazione e per le industrie.

Per quanto concerne i corpi idrici sotterranei che si generano negli acquiferi alluvionali, per lo stato quantitativo è stata invece assegnata la classe C, a causa della non completezza dei dati, dello sviluppo dell'antropizzazione ed, in alcuni casi, della presenza lungo costa di segnali di possibili sovrasfruttamenti della falda evidenziati da fenomeni di ingressione marina (cfr. "Relazione idrogeologica", Allegato Monografico A1.2).

È da sottolineare che tutto quanto sopra esposto dovrà essere verificato mediante indagini di maggiore dettaglio, focalizzate soprattutto alla soluzione delle problematiche inerenti agli acquiferi di pianura (costieri e intramontani). In ogni caso, anche se insufficienti ai fini di una

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

classificazione definitiva dei corpi idrici, i dati acquisiti hanno consentito di individuare le aree di crisi certa.

Nella

Tabella 5.23 sono riportate le classi riferite esclusivamente alle porzioni di corpi idrici sotterranei significativi ricadenti all'interno del territorio regionale.

Tabella 5.23 – "Stato quantitativo dei Corpi Idrici Sotterranei Significativi" ricadenti all'interno del territorio abruzzese.

Corpi idrici sotterranei significativi	Acquifero	Stato quantitativo
Montagna dei Fiori	carbonatico	Α
Monti del Gran Sasso – Monte Sirente	carbonatico	A
Monti della Maiella	carbonatico	A
Monte Morrone	carbonatico	A
Monte Porrara	carbonatico	A
Monte Rotella	carbonatico	A
Monte Genzana – Monte Greco	carbonatico	A
Monte Marsicano	carbonatico	A
Monte Cornacchia - Monti della Meta	carbonatico	A
Monti Simbruini – Monti Ernici – Monte Cairo	carbonatico	A
Monte Velino – Monte Giano – Monte Nuria	carbonatico	A
Piana del Tronto	alluvionale	С
Piana del Vibrata	alluvionale	С
Piana del Salinello	alluvionale	С
Piana del Tordino	alluvionale	С
Piana del Vomano	alluvionale	С
Piana del Piomba-Saline (Fino e Tavo)	alluvionale	С
Piana del Pescara	alluvionale	С
Piana del Foro	alluvionale	С
Piana del Basso Sangro	alluvionale	С
Piana del Sinello	alluvionale	С
Piana del Trigno	alluvionale	С
Piana dell'Alta Valle dell'Aterno	fluvio-lacustre	A-B
Piana di Sulmona	fluvio-lacustre	A-B
Piana del Fucino e dell'Imele	fluvio-lacustre	A-B
Piana di Castel di Sangro	fluvio-lacustre	A-B
Piana del Tirino	fluvio-lacustre	A-B
Piana di Oricola	fluvio-lacustre	А-В

La classificazione dello stato quantitativo dei corpi idrici sotterranei significativi è riportata nell'allegato cartografico "Carta della classificazione dello Stato Quantitativo dei Corpi Idrici Sotterranei Significativi (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-5.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Per approfondimenti relativi allo stato quantitativo di ciascun corpo idrico sotterraneo significativo è possibile far riferimento all'Allegato Monografico A1.4 "Classificazione dello stato di qualità ambientale dei corpi idrici sotterranei significativi" e relativa appendice "Programma di Monitoraggio per il controllo delle acque sotterranee – Aggiornamento dei risultati ottenuti dalle attività di monitoraggio (gennaio 2009-dicembre 2009)" redatta da ARTA Abruzzo.

Stato chimico

Lo "<u>stato chimico dei corpi idrici sotterranei significativi</u>" è stato determinato sulla base dei risultati ottenuti dal monitoraggio qualitativo delle acque sotterranee e sulla base di varie considerazioni.

È da sottolineare che tali risultati dovranno essere verificati con il prosieguo delle attività di monitoraggio e affinati mediante la realizzazione di indagini di maggiore dettaglio. In ogni caso, essi hanno permesso una caratterizzazione chimica delle acque sotterranee e, di conseguenza, hanno consentito di individuare le aree di crisi certa e di probabile crisi.

Per quanto concerne il monitoraggio qualitativo è stata effettuata la determinazione:

- dei parametri di base chimico-fisici riportati in tabella 19 dell'allegato 1 al D.Lgs. 152/99,
 comprensivi dei "parametri macrodescrittori" da utilizzare per la classificazione delle acque;
- di gran parte dei parametri addizionali riportati nella tabella 21 dello stesso allegato 1.

Come evidenziato i dati di monitoraggio utilizzati per la prima classificazione delle acque sotterranee sono quelli relativi al periodo ottobre 2003 e settembre 2005 (*fase conoscitiva*). Si tratta di quattro tornate di misure di tutti i parametri, effettuate, con cadenza semestrale. Inoltre, laddove esistenti, sono stati utilizzati anche i dati relativi alle campagne di misure eseguite per il monitoraggio dei "Nitrati". C'è da sottolineare che per quanto riguarda alcuni corpi idrici sotterranei alluvionali e fluvio-lacustri, sono stati utilizzati anche i primi dati (1° semestre 2006) relativi al monitoraggio delle stazioni aggiunte nella fase "a regime". Il Montoraggio è proseguito negli anni successivi permettendo di aggiornare la prima classificazione.

Nella **Tabella 5.24** è riportato lo stato chimico riferito esclusivamente alle porzioni di corpi idrici sotterranei significativi ricadenti all'interno del territorio regionale, ottenuto nella fase conoscitiva 2003 -2005;

Nella **Tebella 5.24 bis** viene riportato lo stati chimico degli stessi corpi idrici relativo agli anni di monitoraggio dal 2006 al 2009.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 5.24 - "Stato chimico dei corpi idrici sotterranei significativi"ricadenti all'interno del territorio abruzzese (ottobre 2003-settembre 2005)

abruzz	ese (ottobre 2003-settembre 2005)		
Corpi idrici sotterranei significativi	Settori	Acquifero	Stato chimico
Montagna dei Fiori		carbonatico	0
Monti del Gran Sasso – Monte Sirente	Monti del Gran Sasso: GS-S(a)1, 3, 4, 5, 6 e 7; Monte Sirente: GS-S(b)1 e 3	carbonatico	2
	GS-S(a)2 e GS-S(b)2	carbonatico	1-2
	Monte Amaro [ML(b)2]	carbonatico	1
Monti della Maiella	Colle Sciarrocca [ML(a)2], Monte Acquaviva s.s. [ML(b)1] e Colle della Civita s.s. [ML(a)1]	carbonatico	2
Maria	Monte Morrone s.s. [MR(a)2]	carbonatico	1
Monte Morrone	Monte Rotondo [MR(a)1]	carbonatico	2
Monte Porrara	- , , -	carbonatico	1
	Monte Arazzecca: parte di RT(b)	carbonatico	2
Monte Rotel≀a	tutto il restante corpo idrico	carbonatico	1
Monte Genzana – Monte Greco		carbonatico	1
	M. Marsicano: MS(a)1, 2 e 3	carbonatico	1
Monte Marsicano	M. Godi: MS(b)1 e 2	carbonatico	2
	M Pianeccia: parte di C-M(a)1; C-M(b)2 e 3	carbonatico	2
Monte Cornacchia - Monti della Meta	C-M(c)	carbonatico	1-2
	tutto il restante corpo	carbonatico	1
Monti Simbruini – Monti Ernici – Monte Cairo	·	carbonatico	1
Marta Valina - Marta Ciara - Marta Naria	V-G-N(c)	carbonatico	1-2
Monte Velino – Monte Giano – Monte Nuria	tutto il restante corpo	carbonatico	1
Piana del Tronto		alluvionale	4
Piana del Vibrata		alluvionale	4
Piana del Salinello	Settore monte	alluvionale	2 (*)
Platia dei Salifiello	Settore foce	alluvionale	4 (*)
Piana del Tordino		alluvionale	4
Piana del Vomano		alluvionale	4
Piana del Piomba-Saline (Fino e Tavo)		alluvionale	4
Piana del Pescara		alluvionale	4
Piana del Foro	Settore di piana a ridosso del massiccio della Maiella e settore intermedio	alluvionale	2
	Settore foce	alluvionale	3-4 (*)
Piana del Basso Sangro		alluvionale	4
Piana del Sinello		alluvionale	3-4 (*)
Piana del Trigno		alluvionale	4
Piana dell'Alta Valle dell'Aterno		fluvio-lacustre	3-4 (°)
Piana di Sulmona		fluvio-lacustre	3-4(*)
Piana del Fucino e dell'Imele		fluvio-lacustre	3-4 (°)
Piana di Castel di Sangro		fluvio-lacustre	3-4(*)
Piana del Tirino		fluvio-lacustre	3-4 (°)
Piana di Oricola		fluvio-lacustre	3-4 (*)
i idila di Officola		וועאוט ומנעטנופ	J-7 (·)

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- (*) sono stati utilizzati anche i primi dati (1º semestre 2006) relativi al monitoraggio delle stazioni aggiunte nella fase "a regime"
- (°) dati in corso di verifica

Tabella 5.24 bis - "Stato chimico dei corpi idrici sotterranei significativi" ricadenti all'interno del territorio abruzzese (2006, 2007, 2008, 2009).

Corpi idrici sotterranei significativi	Acquifero	2006	2007	2008	2009
Montagna dei Fiori	carbonatico	-	-	-	-
Monti del Gran Sasso – Monte Sirente*	carbonatico	1	1	1	1-2
Monti della Maiella	carbonatico	1	1	1	1
Monte Morrone**	carbonatico	2	1	2	2
Monte Porrara	carbonatico	1	1	1	2
Monte Rotella	carbonatico	2	2	2	2
Monte Genzana – Monte Greco	carbonatico	1-2	1	1	1
Monte Marsicano	carbonatico	1	1	1	1
Monte Cornacchia - Monti della Meta***	carbonatico	1	1	1	1
Monti Simbruini – Monti Ernici – Monte Cairo	carbonatico	1	1	1	2
Monte Velino – Monte Giano – Monte Nuria	carbonatico	2	2	2	2
Piana del Tronto	alluvionale	4	4	4	4
Piana del Vibrata	alluvionale	4	4	4	4
Piana del Salinello	alluvionale	4	4	4	4
Piana del Tordino	alluvionale	4	4	4	4
Piana del Vomano	alluvionale	4	4	4	4
Piana del Piomba-Saline (Fino e Tavo)	alluvionale	4	4	4	4
Piana del Pescara	alluvionale	4	4	4	4
Piana del Foro	alluvionale	2	4	4	4
Piana del Basso Sangro	alluvionale	4	4	3	3
Piana del Sinello	alluvionale	2	4	4	4
Piana del Trigno	alluvionale	4	4	3	4
Piana dell'Alta Valle dell'Aterno	fluvio-lacustre	ı	2	2	3
Piana di Sulmona	fluvio-lacustre	4	4	4	4
Piana del Fucino e dell'Imele	fluvio-lacustre	2	2	4	4
Piana di Castel di Sangro	fluvio-lacustre	2	2	2	2
Piana del Tirino	fluvio-lacustre	4	4	4	4
Piana di Oricola	fluvio-lacustre	-	4	4	4

^{*:} il gruppo sorgivo Alto Aterno (GS-S16) è caratterizzato da uno stato di qualità chimica inferiore alla restante parte del corpo idrico sotterraneo "Monti del Gran Sasso – Monte Sirente". Nello specifico, lo stato di qualità chimica del gruppo sorgivo è risultato in classe 4 nel 2006. in classe 3 nel 2007 e nel 2008 ed in classe 2 nel 2009. Tale differenza è imputabile probabilmente al parziale mescolamento delle acque sorgive con le acque di falda dei depositi fluvio-lacustri della Piana dell'Alta Valle dell'Aterno (cfr. elaborato A1.4 "Classificazione dello stato di qualità ambientale dei corpi idrici sotterranei significativi").

^{**:} la stazione MR(a)3 (campo-pozzi Colle S. Angelo) afferente al corpo idrico secondario "Monte Rotondo" (corpo idrico principale "Monte Morrone") è stata caratterizzata da una classe chimica 4 nel 2006 e 2007. Negli anni 2008 e 2009 lo stato chimico non è stato valutato a causa della dismissione del pozzo di indagine. La compromissione chimica è di carattere locale, imputabile ad un inquinamento da solventi organici alogenati dovuto all'interazione con l'area SIN di Bussi sul Tirino (cfr. elaborato A1.10 " Individuazione dei corpi idrici sotterranei, analisis delle pressioni e del livello di rischio ai sensi del D.Lqs. 30/2009).

^{***:} la stazione CM11(p) (pozzo Micron) è caratterizzata ad una classe di qualità chimica 4 perdurante dal 2006 al 2009. La compromissione chimica è di carattere strettamente locale, imputabile ad un inquinamento da solventi organici alogenati, probabilmente dovuto all'interazione con la falda dell'acquifero fluvio-lacustre della Piana del Fucino forse causato da un non perfetto condizionamento del pozzo (cfr. elaborato A1.4 "Classificazione dello stato di qualità ambientale dei corpi idrici sotterranei significativi").

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La classificazione dello stato chimico dei corpi idrici sotterranei significativi è riportata nell'allegato cartografico "Carta della classificazione dello Stato Chimico dei Corpi Idrici Sotterranei Significativi (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-6.

Per approfondimenti relativi allo stato chimico di ciascun corpo idrico sotterraneo significativo è possibile far riferimento all'Allegato Monografico A1.4 "Classificazione dello Stato di qualità ambientale dei corpi idrici sotterranei significativi" e relativa appendice "Programma di Monitoraggio per il controllo delle acque sotterranee — Aggiornamento dei risultati ottenuti dalle attività di monitoraggio (gennaio 2009-dicembre 2009)" redatta da ARTA Abruzzo.

Stato di qualità ambientale

La definizione dello "stato ambientale dei corpi idrici sotterranei significativi" è stata affrontata come indicato nell'Allegato 1 (parte 4.4.3) del D.Lgs. 152/99, mediante la "sovrapposizione delle classi chimiche (classi 1, 2, 3, 4, 0) e quantitative (classi A, B, C, D)", "così come indicato nella tabella 22" della suddetta legge e sulla base di varie considerazioni.

Nella **Tabella 5.25** è riportato lo stato ambientale, riferito alle porzioni di corpi idrici sotterranei significativi ricadenti all'interno del territorio regionale, determinato sulla base del monitoraggio effettuato nella fase conoscitiva (2003-2005)

Nella **Tabella 5.25 bis** sono invece riportati i risultati relativi alla valutazione dello stato ambientale sulla base del monitoraggio effettuato negli anni 2006, 2007, 2008 e 2009.

Tabella 5.25 - "Stato ambientale (quali-quantitativo) dei corpi idrici sotterranei significativi" ricadenti all'interno del territorio abruzzese

Corpi idrici sotterranei significativi	Settori	Acquifero	Stato ambientale
Montagna dei Fiori		carbonatico	particolare
Monti del Gran Sasso – Monte Sirente	Monti del Gran Sasso: GS-S(a)1, 3, 4, 5, 6 e 7; Monte Sirente: GS- S(b)1 e 3	carbonatico	buono
	GS-S(a)2 e GS-S(b)2	carbonatico	elevato-buono
	Monte Amaro [ML(b)2]	carbonatico	elevato
Monti della Maiella	Colle Sciarrocca [ML(a)2], Monte Acquaviva s.s. [ML(b)1] e Colle della Civita s.s. [ML(a)1]	carbonatico	buono
Monte Morrone	Monte Morrone s.s. [MR(a)2]	carbonatico	elevato
Monte Monone	Monte Rotondo [MR(a)1]	carbonatico	buono
Monte Porrara		carbonatico	elevato
Monte Rotella	Monte Arazzecca: parte di RT(b)	carbonatico	buono
Monte Rotella	tutto il restante corpo idrico	carbonatico	elevato

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpi idrici sotterranei significativi	Settori	Acquifero	Stato ambientale
Monte Genzana – Monte Greco		carbonatico	elevato
Monte Marsicano	M. Marsicano: MS(a)1, 2 e 3	carbonatico	elevato
Monte Marsicano	M. Godi: MS(b)1 e 2	carbonatico	buono
Marka Carranakia Marki dalla Maka	M Pianeccia: parte di C-M(a)1; C-M(b)2 e 3	carbonatico	buono
Monte Cornacchia - Monti della Meta	C-M(c)	carbonatico	elevato-buono
	tutto il restante corpo idrico	carbonatico	elevato
Monti Simbruini – Monti Ernici – Monte Cairo		carbonatico	elevato
Monte Velino – Monte Giano – Monte	V-G-N(c)	carbonatico	elevato-buono
Nuria	tutto il restante corpo idrico	carbonatico	elevato
Piana del Tronto		alluvionale	scadente
Piana del Vibrata		alluvionale	scadente
Piana del Salinello		alluvionale	scadente
Piana del Tordino		alluvionale	scadente
Piana del Vomano		alluvionale	scadente
Piana del Piomba-Saline (Fino e Tavo)		alluvionale	scadente
Piana del Pescara		alluvionale	scadente
Piana del Foro		alluvionale	scadente
Piana del Basso Sangro		alluvionale	scadente
Piana del Sinello		alluvionale	scadente
Piana del Trigno		alluvionale	scadente
Piana dell'Alta Valle dell'Aterno	-	fluvio-lacustre	sufficiente-scadente(°)
Piana di Sulmona	-	fluvio-lacustre	sufficiente-scadente
Piana del Fucino e dell'Imele	-	fluvio-lacustre	sufficiente-scadente(°)
Piana di Castel di Sangro	-	fluvio-lacustre	sufficiente-scadente
Piana del Tirino		fluvio-lacustre	sufficiente-scadente(°)
Piana di Oricola		fluvio-lacustre	sufficiente-scadente

^(°) dati in corso di verifica

Tabella 5.25 bis- Stato ambientale (quali-quantitativo) dei corpi idrici sotterranei significativi" ricadenti all'interno del territorio abruzzese (anni 2006- 2007-2008-2009)

Corpi idrici sotterranei significativi	Acquifero	2006	2007	2008	2009
Montagna dei Fiori	carbonatico	-	-	-	ı
Monti del Gran Sasso – Monte Sirente*	carbonatico	Elevato	Elevato	Elevato	Elevato
Monti della Maiella	carbonatico	Elevato	Elevato	Elevato	Elevato
Monte Morrone**	carbonatico	Buono	Elevato	Buono	Buono
Monte Porrara	carbonatico	Elevato	Elevato	Elevato	Buono
Monte Rotella	carbonatico	Buono	Buono	Buono	Buono
Monte Genzana – Monte Greco	carbonatico	Elevato/Buono	Elevato/Buono	Elevato	Elevato
Monte Marsicano	carbonatico	Elevato	Elevato	Elevato	Elevato
Monte Cornacchia - Monti della Meta***	carbonatico	Elevato	Elevato	Elevato	Elevato
Monti Simbruini – Monti Ernici – Monte Cairo	carbonatico	Elevato	Elevato	Elevato	Buono
Monte Velino – Monte Giano – Monte Nuria	carbonatico	Buono	Buono	Buono	Buono
Piana del Tronto	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Vibrata	alluvionale	Scadente	Scadente	Scadente	Scadente

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Corpi idrici sotterranei significativi	Acquifero	2006	2007	2008	2009
Piana del Salinello	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Tordino	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Vomano	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Piomba-Saline (Fino e Tavo)	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Pescara	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Foro	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Basso Sangro	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Sinello	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana del Trigno	alluvionale	Scadente	Scadente	Scadente	Scadente
Piana dell'Alta Valle dell'Aterno	fluvio-lacustre	-	Buono	Buono	Sufficiente
Piana di Sulmona	fluvio-lacustre	Scadente	Scadente	Scadente	Scadente
Piana del Fucino e dell'Imele	fluvio-lacustre	Buono	Buono	Scadente	Scadente
Piana di Castel di Sangro	fluvio-lacustre	Buono	Buono	Buono	Buono
Piana del Tirino	fluvio-lacustre	Scadente	Scadente	Scadente	Scadente
Piana di Oricola	fluvio-lacustre	-	Scadente	Scadente	Scadente

La classificazione dello stato ambientale dei corpi idrici sotterranei significativi è riportata nell'allegato cartografico "Carta della classificazione dello Stato Ambientale (qualiquantitativo) dei Corpi Idrici Sotterranei Significativi (Monitoraggio 2009)", in scala 1:250.000, Tavola 4-7.

Per approfondimenti relativi allo stato ambientale di ciascun corpo idrico sotterraneo significativo è possibile far riferimento all'Allegato Monografico A1.4 "Classificazione dello Stato di qualità ambientale dei corpi idrici sotterranei significativi" e relativa appendice "Programma di Monitoraggio per il controllo delle acque sotterranee – Aggiornamento dei risultati ottenuti dalle attività di monitoraggio (gennaio 2009-dicembre 2009)" redatta da ARTA Abruzzo.

Come è possibile osservare in tabella, per <u>le falde degli acquiferi carbonatici</u>, è stato ottenuto uno <u>stato ambientale variabile tra elevato, buono e particolare</u>; il che indica che le acque di tali acquiferi, in generale, non presentano problemi né di tipo quantitativo né chimico.

Dal punto di vista quantitativo non sono stati riscontrati problemi, in quanto le acque vengono captate, per lo più, con opere di presa a gravità, che, ovviamente, non consentono il sovrasfruttamento dell'acquifero.

C'è da sottolineare che solo in alcuni casi la captazione delle acque avviene mediante pozzi. Anche in questo caso non avviene alcun sovrasfruttamento della falda, in quanto le portate emunte non superano mai la potenzialità media annua degli acquiferi in oggetto.

Comunque, anche nel caso ciò accadesse in qualche periodo, gli acquiferi carbonatici hanno una tipica struttura "a catino" che ne consente l'utilizzazione come "serbatoio naturale di compenso", sia stagionale che interannuale. In altri termini, nei periodi di magra o siccitosi, quando la

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

risorsa che viene a giorno naturalmente non è sufficiente a soddisfare le esigenze dell'utenza, si può fare affidamento sulle riserve immagazzinate nella citata struttura "a catino". Queste, infatti, possono essere prese momentaneamente "in prestito", tramite gli emungimenti dai pozzi, per essere poi naturalmente "restituite" all'acquifero nel successivo o nei successivi periodi di ricarica invernale.

Per lo stato chimico, gli acquiferi carbonatici risultano caratterizzati da una falda idrica sotterranea di base profonda e quindi maggiormente protetta e da un impatto antropico generalmente nullo o trascurabile, come si evidenzia anche dai risultati delle analisi. Solo in punti localizzati è stato verificato un aumento della classe e quindi un peggioramento della qualità delle acque. Ciò è legato a situazioni particolari, quali possono essere immissioni dirette in falda di acque di ruscellamento superficiale tramite il sistema inghiottitoio-canale carsicosorgente, interazioni con la falda dell'acquifero fluvio-lacustre e/o con corpi idrici superficiali, oltre che fenomeni di origine naturale, quali l'approfondimento dei circuiti idrici sotterranei che dà luogo ad una mobilizzazione di acque più profonde e quindi più mineralizzate (in quest'ultimo caso comunque esse sono state fatte rientrare in una classe "naturale particolare").

Nel caso dell'interazione delle acque sotterranee analizzate con le acque superficiali e/o con quelle dell'acquifero di piana (che quindi ne pregiudica la qualità), laddove i problemi riscontrati trovassero conferma con il prosieguo della attività di monitoraggio, si potrebbe pensare anche ad una modificazione delle opere di captazione in modo da eliminare e/o almeno limitare il richiamo delle acque di peggiore qualità.

Per quanto riguarda invece <u>le falde degli acquiferi fluvio-lacustri</u>, è stato ottenuto uno <u>stato ambientale tra sufficiente e scadente</u>; mentre per <u>le falde degli acquiferi alluvionali costieri</u>, lo <u>stato ambientale</u> è risultato <u>scadente</u>.

Ciò è legato allo stato chimico delle acque analizzate che è risultato quasi sempre compromesso. Tale stato dovrà comunque essere verificato con il prosieguo delle attività di monitoraggio e la realizzazione di indagini di maggiore dettaglio. Queste ultime risultano necessarie per ottenere una maggiore certezza dei risultati, in quanto all'interno della stessa piana potrebbero coesistere zone caratterizzate da migliori o peggiori condizioni di qualità. Infatti, essendo gli acquiferi fluvio-lacustri ed alluvionali eterogenei ed anisotropi, non si può escludere, ad esempio, che si abbiano aree caratterizzate da una migliore qualità delle acque dovuta alla presenza di falde più profonde e protette, o viceversa.

Riguardo allo stato quantitativo, le piane costiere sono state inserite in classe C, a causa dell'insufficienza dei dati, dello sviluppo dell'antropizzazione ed, in alcuni casi, della presenza lungo costa di segnali di possibili sovrasfruttamenti della falda evidenziati da fenomeni di ingressione marina ("Relazione idrogeologica", Allegato Monografico A1.2).

Anche per le acque degli acquiferi fluvio-lacustri intramontani non vi sono dati sufficienti. Però è stato possibile effettuare diverse considerazioni tali da farle rientrare in classe A-B. Infatti questi

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

acquiferi sono soggetti a copiose alimentazioni laterali, mediante travasi sotterranei, provenienti dalle falde degli acquiferi carbonatici e/o dai corpi idrici superficiali, oltre che ad una presenza di pozzi relativamente ridotta.

Come già detto in precedenza, questi risultati sono da migliorare e, quindi, da verificare con il proseguimento delle campagne di misure, oltre che con l'avvio di indagini specifiche e di maggiore dettaglio, focalizzate soprattutto alla soluzione delle problematiche inerenti agli acquiferi di pianura (costieri e intramontani).

In ogni caso, anche se insufficienti ai fini di una classificazione definitiva dei corpi idrici, i dati acquisiti hanno consentito di individuare le aree di crisi certa.

Inoltre, c'è da sottolineare che tale classificazione ha carattere temporaneo e dovrà essere progressivamente e periodicamente riaggiornata in base alle previsioni della normativa vigente.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

6. MONITORAGGIO E CLASSIFICAZIONE DELLE ACQUE A SPECIFICA DESTINAZIONE FUNZIONALE

6.1 Monitoraggio e classificazione delle acque di balneazione

D.Lgs. 152/06 - PARTE TERZA

Articolo 83 - Acque di balneazione

1. Le acque destinate alla balneazione devono soddisfare i requisiti di cui al decreto del Presidente della Repubblica 8 giugno 1982, n. 470.

Il monitoraggio e la classificazione delle acque di balneazione, così come riportato nel D.Lgs. 152/06 che riprende i contenuti del D.Lgs. 152/99, sono stati effettuati a decorrere dalla stagione balneare 2010, con il Decreto legislativo 30 maggio 2008 n. 116 e con la successiva pubblicazione del Decreto Interministeriale 30/3/2010 (G. U. del 24 maggio 2010 S.O. 97), in recepimento della nuova Direttiva europea 2006/7/CE.

Con il nuovo monitoraggio cessa il controllo dei parametri chimico-fisici e microbiologici di cui al Decreto del Presidente della Repubblica 8 giugno 1982, n. 470 e si applicano le seguenti innovazioni:

- la determinazione di soli 2 parametri microbiologici: Escherichia coli ed Enterococchi intestinali;
- la frequenza di campionamento mensile nell'arco della stagione balneare (ad iniziare da aprile sino alla fine di settembre) secondo un calendario prestabilito;
- il punto di monitoraggio fissato all'interno di ciascuna acqua di balneazione;
- la definizione dei Profili delle acque di balneazione (entro primavera 2011);
- la classificazione delle acque sulla base degli esiti di quattro anni di monitoraggio, secondo la scala di qualità: "scarsa, sufficiente, buona e eccellente" (entro il 2015);
- la regolamentazione degli episodi caratterizzati da "inquinamento di breve durata" o da "situazioni anomale".

Per la stagione balneare 2010, le "acque di balneazione " e i " punti di monitoraggio " individuati nelle Determine della Regione Abruzzo DC 14/2 del 25/01/10 e DC14/18 del 16/04/10 e DC 14/23 del 18/05/10 sono sostanzialmente gli stessi già indicati nei precedenti programmi di monitoraggio, effettuati ai sensi del DPR 470/82, che rimangono quindi invariati. Naturalmente, non sono adibite alla balneazione le acque delle foci dei fiumi, dei torrenti e dei porti, che pertanto vengono dichiarate "zone permanentemente vietate".

6.1.1 Attività di monitoraggio

I risultati dell'ultima campagna di monitoraggio disponibile sono quelli relativi all'anno 2010.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

L'ARTA Abruzzo, incaricata dalla Regione di effettuare controlli ispettivi ed analitici sui punti individuati, ha garantito l'analisi della qualità delle acque di balneazione secondo i tempi, le modalità ed i metodi di riferimento previsti nell'allegato I , II V del Decreto legislativo 30 maggio 2008 n. 116 .

I prelievi di acqua marina sono stati effettuati a partire dal 1° Aprile con termine al 30 settembre 2010. Il calendario dei controlli analitici, in base alla nuova normativa ha previsto un campionamento mensile per punto di monitoraggio, ad eccezione di alcuni punti che si ritengono sensibili e per i quali la Regione ha previsto di aumentarli a due per mese.

Le determinazioni analitiche e i valori limite relativi ad un singolo campione, ai fini della balneabilità delle acque, sono quelli fissati all'allegato A del Decreto Interministeriale attuativo del D.Lgs. 116/08 del 30 marzo 2010. A differenza del vecchio DPR 470/88 in cui la qualità delle acque era monitorata sulla base di valori limite di parametri chimici, fisici e microbiologici, la nuova normativa definisce la qualità delle acque di balneazione, sulla base dei risultati delle sole analisi microbiologiche condotte sui parametri indicatori di contaminazione fecale: Escherichia coli e Enterococchi intestinali; l'esperienza maturata nel campo della microbiologia e della ricerca ha evidenziato che l'utilizzo di questi due parametri, costituisce una misura di valutazione più rapida della qualità microbiologica di un sistema acquatico e, soprattutto, più efficace neli segnalare la possibile presenza di microrganismi patogeni.

Allegato A del Decreto Interministeriale del 30 marzo 2010

V ALORI IZ	MITE PER UN SINGOLO CAMI	TONE
PARAMETRI	CORPO IDRICO	Valori
Enterococchi intestinali	Acque marine	200 n*/100ml
	Acque interne	500 n*/100ml
Escherichia coli	Acque marine	500 n*/100 ml
	Acque interne	1000 n*/100 ml

*n = UFC per EN ISO 9308-1 (E. coli) e EN ISO 7899-2 (Enterococchi) o MPN per EN ISO 9308-3 (E. coli) e EN ISO 7899-1 (Enterococchi)

Qualora, nel corso della stagione balneare, le analisi delle acque evidenziano un superamento dei valori limite riportati nell'allegato A, sono attivate le azioni di gestione di seguito riportate:

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- adozione di un divieto temporaneo di balneazione a tutta l'acqua di balneazione di pertinenza del punto di monitoraggio attraverso un'Ordinanza Sindacale ed informazione ai bagnanti mediante segnali di divieto ai sensi dell'art. 15, comma 1, lettera e) del decreto legislativo 30 maggio 2008, n. 116. Le Regioni e le Province autonome valutano se limitare tale divieto ad un tratto dell'area di balneazione a seguito dei risultati di una serie di campionamenti, effettuati nei giorni successivi in punti di controllo signifi cativi a distanza crescente dal punto di prelievo, per delimitare l'area interessata dal fenomeno inquinante. A seguito della delimitazione dell'area da interdire, sarà necessario analizzare le cause del superamento del valore limite, al fine di rivedere eventualmente la suddivisione o il raggruppamento delle acque di balneazione secondo i criteri di cui all'art. 7, comma 6, del decreto legislativo 30 maggio 2008, n. 116, e di individuare ed attuare adeguate misure di miglioramento.
- revoca del provvedimento di chiusura alla balneazione a fronte di un primo esito analitico favorevole, successivo all'evento di inquinamento, che dimostri il ripristino della qualità delle acque di balneazione.

Nell'**Appendice 2** al presente Quadro Conoscitivo "La qualità delle acque di balneazione in Abruzzo- RAPPORTO 2010", vengono descritti in dettaglio risultati delle attività di monitoraggio svolte nel 2011, confrontati con quelli degli anni precedenti e viene fornito un giudizio di qualità dei corsi d'acqua regionali.

6.2 Monitoraggio e classificazione delle acque dolci superficiali idonee alla vita dei pesci

D.Lgs. 152/06 - PARTE TERZA

Articolo 74 – Definizioni

- 1. Ai sensi della presente sezione si intende per:
- b) acque ciprinicole: le acque in cui vivono o possono vivere pesci appartenenti ai ciprinidi (Cyprinidae) o a specie come i lucci, i pesci persici e le anguille;
- d) acque salmonicole: le acque in cui vivono o possono vivere pesci appartenenti a specie come le trote, i temoli e i coregoni;

Articolo 84 - Acque dolci idonee alla vita dei pesci

2. Le regioni, entro quindici mesi dalla designazione, classificano le acque dolci superficiali che presentino valori dei parametri di qualità conformi con quelli imperativi previsti dalla Tabella 1/B dell'Allegato 2 alla parte terza del presente decreto come acque dolci "salmonicole" o "ciprinicole".

Articolo 85 – Accertamento della qualità delle acque idonee alla vita dei pesci

1. Le acque destinate e classificate ai sensi dell'articolo 84 si considerano idonee alla vita dei pesci se rispondono ai requisiti riportati nella Tabella 1/B delll'Allegato 2 alla parte terza del presente decreto.

Il monitoraggio e la classificazione delle acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci sono stati realizzati sulla base del D.Lgs. 130/92 e del successivo D.Lgs. 152/99, i cui contenuti sono stati totalmente recepiti dal D.Lgs. 152/06.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

6.2.1 Attività di monitoraggio

Le campagne di monitoraggio sono state effettuate negli anni:

- 1996-1998;
- 2000-2001;
- 2002-2003;
- 2004-2005.

Il monitoraggio, svolto nel biennio **1996-1998** su n.40 tratti complessivi, ha permesso una prima classificazione delle acque in "salmonicole", "ciprinicole" e "non conformi" ai sensi del D.Lgs. n. 130 del 25 gennaio 1992.

Il monitoraggio svolto nel periodo **2000-2001**, effettuato a completamento del biennio precedente su un totale di 14 punti, ha riguardato i corsi d'acqua della provincia di Teramo e Pescara, monitorati a valle dei tratti già classificati (Cfr. par. 3.3).

Il monitoraggio svolto nel periodo **2002-2003**, su un totale di n. 8 stazioni, ha riguardato i corsi d'acqua della provincia di Chieti e L'Aquila monitorati sugli stessi punti della prima classificazione relativa al 1996-1998.

Il monitoraggio svolto nel periodo **2004-2005**, effettuato su un totale di n. 7 stazioni, ha interessato i corsi d'acqua della provincia di Pescara e L'Aquila negli stessi punti della prima classificazione (1996-1998).

La classificazione delle acque idonee alla vita dei pesci per i periodi di monitoraggio 2000-2001, 2002-2003 e 2004-2005 è stata effettuata sulla base di quanto indicato nel D.Lgs. 152/99 (Tabella 1/B, Sezione B).

Le attività di monitoraggio e classificazione sono state condotte dall'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale".

I tratti fluviali su cui sono stati effettuati i campionamenti durante le diverse campagne di monitoraggio sono riportati in **Tabella 6.1**. Inoltre, per ciascun tratto, il punto di campionamento scelto ai fini della classificazione coincide con il punto di chiusura dello stesso (coordinata di chiusura di fine tratto, cfr. **Tabella 3.1**).

Sulla base di quanto riportato nella Tabella 1/B del D.Lgs. 152/99, il rilevamento della temperatura dell'aria e dell'acqua è stata effettuata con frequenza settimanale, mentre i prelievi per le analisi chimiche sono stati eseguiti con frequenza mensile.

6.2.2 Risultati

L'analisi dei risultati, riportati in **Tabella 6.1**, ha permesso di evidenziare quanto segue:

 nella fase di monitoraggio 1996-1998, sono stati classificati 40 tratti fluviali, di cui 11 sono risultati idonei alla vita dei pesci salmonidi, 4 idonei alla vita dei pesci ciprinidi e 25 non

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

conformi;

- nella fase di monitoraggio 2001-2001, sono stati classificati 14 tratti fluviali, di cui 3 sono risultati idonei alla vita dei pesci salmonidi, 2 idonei alla vita dei pesci ciprinidi e 9 non conformi;
- nella fase di monitoraggio 2002-2003, sono stati classificati 8 tratti fluviali, di cui 3 sono risultati idonei alla vita dei pesci salmonidi, 3 idonei alla vita dei pesci ciprinidi e 2 non conformi;
- nella fase di monitoraggio 2004-2005, sono stati classificati 7 tratti fluviali, di cui 4 sono risultati idonei alla vita dei pesci salmonidi, 1 idoneo alla vita dei pesci ciprinidi e 2 non conformi.

Sulla base dei risultati ottenuti, per i tratti fluviali monitorati è possibile osservare quanto segue:

- i tratti dei fiumi Sinello e Trigno ed il tratto a monte del fiume Lavino hanno mantenuto la "non conformità" rilevata nella prima classificazione (monitoraggio 1996-1998) anche nei monitoraggi successivi (2002-2003 e 2004-2005);
- i tratti a monte dei fiumi Tirino, Orta e il tratto del fiume Vera hanno mantenuto la classificazione di "acque idonee alla vita dei salmonidi" (monitoraggio 1996-1998) nel monitoraggio relativo al 2004-2005;
- il tratto del fiume Foro, il secondo tratto monitorato del fiume Aventino (Acque Vive, Taranta Peligna) ed il tratto del fiume Sangro in prossimità della confluenza con l'Aventino, hanno fatto registrare un miglioramento passando da acque "non conformi" (1996-1998) ad acque "salmonicole" (2002-2003); allo stesso modo il tratto a monte del fiume Orfento, classificato come non conforme a seguito del monitoraggio 1996-1998, evidenza conformità alla vita dei pesci salmonidi nel monitoraggio 2004-2005;
- il tratto a monte del fiume Pescara (sorgenti), il tratto del fiume Avello e i due tratti a valle del fiume Sangro (ponte della strada che porta a Mozzagrogna e ponte sulla S.S. 16) hanno fatto registrare un miglioramento passando da acque "non conformi" (1996-1998) ad acque "ciprinicole" (2002-2003 e 2004-2005);
- il fiume Vetoio ha mostrato un peggioramento passando da acque idonee alla vita dei pesci ciprinidi (1996-1998) ad acque non conformi (2004-2005).

La classificazione delle acque in "acque salmonicole", "acque ciprinicole" e "acque non conformi" è riportata in **Figura 6.1**. Tale classificazione è quella relativa all'ultima campagna di monitoraggio effettuata in corrispondenza di quel determinato tratto fluviale. In carta è riportato anche il periodo di monitoraggio a cui tale classificazione si riferisce; infatti, come già evidenziato in precedenza, il monitoraggio non ha interessato contemporaneamente tutti i tratti in esame.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La classificazione delle acque idonee alla vita dei pesci è riportata nell'allegato cartografico "Carta della classificazione delle acque dolci idonee alla Vita dei Pesci", in scala 1:250.000, Tavola 2-3b.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Tabella 6.1- Classificazione delle acque superficiali destinate alla vita dei pesci

Corso	Bacino	Localizzazione (*)		Data	Monitoraggio			
d'acqua	idrografico	Inizio tratto considerato	Fine tratto considerato	designazione	1996-1998	2000-2001	2002-2003	2004-2005
F. Salinello	6 1: 11	3 Km circa da Macchia da Sole	Ponte della strada da Macchia da Sole - Garrufo	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
r. Salifiello	Salinello	Tratto	a valle	26/11/2001	n.r.	acque salmonicole	n.r.	n.r.
F. Tordino	Tordino	Valle S.Giovanni, ponte dopo il bivio per Varano	Valle S.Giovanni, alla fine della strada bianca di fronte al cimitero	04/09/1996	non conformi	n.r.	n.r.	n.r.
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
Lago Campotosto		inizio del ponte delle Stecche	fine del ponte delle Stecche	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
F. Chiarino		2 Km circa a monte del punto di immissione nel Lago della Provvidenza	Dalla SS 80 subito dopo il ponte del Lago della Provvidenza	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
R. Arno		Ponticello sul sentiero della Via Crucis, Pietracamela	Ponticello sulla strada Intermesoli, Pietracamela	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
K. AIIIO		Tratto	a valle	26/11/2001	n.r.	acque salmonicole	n.r.	n.r.
T. Mavone	Vomano	Ponte a monte di Fano di Corno, strada per Cerchiara	Ponte per pedoni a 500m da Isola del Gran Sasso verso Fano di Corno	04/09/1996	non conformi	n.r.	n.r.	n.r.
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
T. Fiumetto		Colledara	Sulla strada Tossicia-Castiglione della Valle	04/09/1996	non conformi	n.r.	n.r.	n.r.
r. Flumetto		Tratto	a valle	26/11/2001	n.r.	acque ciprinicole	n.r.	n.r.
F. Vomano	0	Villa Vomano, direzione Montorio, ponte dopo il bivio per Miano	Villa Vomano, direzione Montorio, ponte prima il bivio per Miano	04/09/1996	non conformi	n.r.	n.r.	n.r.
		Tratto a valle		26/11/2001	n.r.	non conformi	n.r.	n.r.
F. Tavo	Fino-Tavo-	in uscita dal lago di Penne	circa 1 Km più a valle	04/09/1996	non conformi	n.r.	n.r.	n.r.
r. Idvu	Saline	Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Corso	Bacino idrografico	Localizzazione (*)		Data	Monitoraggio			
d'acqua		Inizio tratto considerato	Fine tratto considerato	designazione	1996-1998	2000-2001	2002-2003	2004-2005
F. Fino		a 1 Km circa dal bivio per Castiglione Messer Raimondo, strada bianca sulla sinistra	ponte della strada Cappelle-Città S.Angelo	04/09/1996	acque ciprinicole	n.r.	n.r.	n.r.
F. Vetoio		sorgente, in uscita dal laghetto	prima della biforcazione del corso d'acqua	04/09/1996	acque ciprinicole	n.r.	n.r.	non conformi
F. Vera		in prossimità delle sorgenti	500 m circa più a valle	04/09/1996	acque salmonicole	n.r.	n.r.	acque salmonicole
		ponte della S.S.5	Centrale ENEL	04/09/1996	non conformi	n.r.	n.r.	n.r.
F. Aterno		in prossimità del ponte della strada Raiano-Vittorito	1,5 Km circa a monte del ponte	04/09/1996	non conformi	n.r.	n.r.	n.r.
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
T. Tasso		a circa 2,5 Km dal bivio prima di Scanno	inghiottitoio	04/09/1996	non conformi	n.r.	n.r.	n.r.
	Aterno-	alla fine della strada sbarrata che scende al fiume dopo la prima casa del paese	ponte sul lago vicino all'Eremo di San Domenico	04/09/1996	non conformi	n.r.	n.r.	n.r.
F. Sagittario	Pescara	ponte della S.P. Pratola Peligna- Sulmona	ponte della strada che dalla S.S.17 porta al casello dell'autostrada Pescara-Roma	04/09/1996	non conformi	n.r.	n.r.	n.r.
F. Pescara		sorgenti	all'interno della riserva regionale, ponte dell'autostrada Pescara-Roma	04/09/1996	non conformi	n.r.	n.r.	acque ciprinicole
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
F. Tirino		Capo d'Acqua	in prossimità della chiesa si S.Pietro ad Oratorium	04/09/1996	acque salmonicole	n.r.	n.r.	acque salmonicole
r. IIIIIIU		Tratto	a valle	26/11/2001	n.r.	acque ciprinicole	n.r.	n.r.
F. Orta		ponte della strada che da Passo S.Leonardo va verso S.Eufemia	ponte prima di entrare a S.Vittorino	04/09/1996	acque salmonicole	n.r.	n.r.	acque salmonicole
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Corso	Bacino	Localizzazione (*)		Data	Monitoraggio			
d'acqua	idrografico	Inizio tratto considerato	Fine tratto considerato	designazione	1996-1998	2000-2001	2002-2003	2004-2005
F. Orfento		Caramanico, 3 Km circa dalla fine del sentiero delle "scalelle" verso la sorgente	fine del sentiero delle "scalelle"	04/09/1996	non conformi	n.r.	n.r.	acque salmonicole
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
F. Lavino		Decontra, punto più a monte della riserva regionale	Decontra, punto più a valle della riserva regionale	04/09/1996	non conformi	n.r.	n.r.	non conformi
r. Laviilo		Tratto a valle		26/11/2001	n.r.	acque salmonicole	n.r.	n.r.
T. Nora		ponte della strada Vicoli-Civitella Casanova	ponte della strada Catignano-Penne	04/09/1996	non conformi	n.r.	n.r.	n.r.
		Tratto	a valle	26/11/2001	n.r.	non conformi	n.r.	n.r.
F. Foro	Foro	ponte prima di Pretoro	ponte prima di Fara Filiorum Petri	04/09/1996	non conformi	n.r.	acque salmonicole	n.r.
F. Sangro		all'uscita della diga di Barrea	ponte della strada che dalla S.S.83 va a Villa Scontrone	04/09/1996	non conformi	n.r.	n.r.	n.r.
R. Verde		sulla strada che porta a Pescopennataro dalla strada Rosello- Agnone	ponte sulla strada Borello-Rosello	04/09/1996	non conformi	n.r.	n.r.	n.r.
T. Turcano		Rosello	ponte della strada Rosello-Roio del Sangro	04/09/1996	non conformi	n.r.	n.r.	n.r.
F. Aventino	Sangro	ponte della S.S.84 Palena- Pizzoferrato dopo il Passo della Forchetta	300m circa dopo Palena, sulla strada Palena-Roccaraso, cartello stradale giallo accanto ad una stradina sterrata sulla sinistra	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
		Ponte della strada che porta a Lettopalena dalla S.S. 84	Acque Vive, Taranta Peligna	04/09/1996	non conformi	n.r.	acque salmonicole	n.r.
F. Verde		sorgenti, Fara San Martino	ponte della strada San Salvo-Casoli	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.
F. Avello		ponte Avello, Pennapiedimonte	ponte della Strada Palombaro, Casoli	04/09/1996	non conformi	n.r.	acque ciprinicole	n.r.
F. Sangro		in prossimità della confluenza Sangro-Aventino	confine verso valle della riserva regionale	04/09/1996	non conformi	n.r.	acque salmonicole	n.r.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

SERVIZIO QUALITA' DELLE ACQUE

Corso	Bacino	Localizza	zione (*)	Data	Monitoraggio				
d'acqua	idrografico	Inizio tratto considerato	Fine tratto considerato	designazione	1996-1998	2000-2001	2002-2003	2004-2005	
		sulla strada brecciata che dal Castello di Sette passa sotto il viadotto della superstrada	ponte della strada che porta a Mozzagrogna	04/09/1996	non conformi	n.r.	acque ciprinicole	n.r.	
		impianto di depurazione	ponte sulla S.S.16	04/09/1996	non conformi	n.r.	acque ciprinicole	n.r.	
T. Osento	Osento	Contrada Vidorni, bivio a destra della S.S.364, Casalbordino-Atessa ponticello sul fiume	1 Km circa più a valle	04/09/1996	acque ciprinicole	n.r.	n.r.	n.r.	
F. Sinello	Sinello	bivio per Pollutri, sulla S.S. che dalla S.S.16 porta a Gissi	ponte sulla S.S.16	04/09/1996	non conformi	n.r.	non conformi	n.r.	
T. Buonanotte	Buonanotte	ponte della strada San Salvo-Cupello	ponte della S.S.16	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.	
F. Treste		ponte nei pressi della Località Carna Nera	dal ponte della S.S.86 Carunchio - San Buono alla cava in direzione Fraine	04/09/1996	acque ciprinicole	n.r.	n.r.	n.r.	
F. Trigno	Trigno	accesso dalla stradina sterrata che si trova sul lato destro del viadotto Trigno 2, direzione ovest-est della S.S. 650	fine del ponte, direzione ovest-est	04/09/1996	non conformi	n.r.	non conformi	n.r.	
T. Lo Schioppo	Liri	Inizio del tratto considerato	La Grancia, dalla cascata al primo ponticello dopo il Camping	04/09/1996	acque salmonicole	n.r.	n.r.	n.r.	

n.r.: non rilevato

n.d.: non disponibile

(*) per le coordinate geografiche identificative di ciascun tratto fluviale e per l'ubicazione si rimanda alla **Tabella 3.1** e alla **Figura 3.1**.

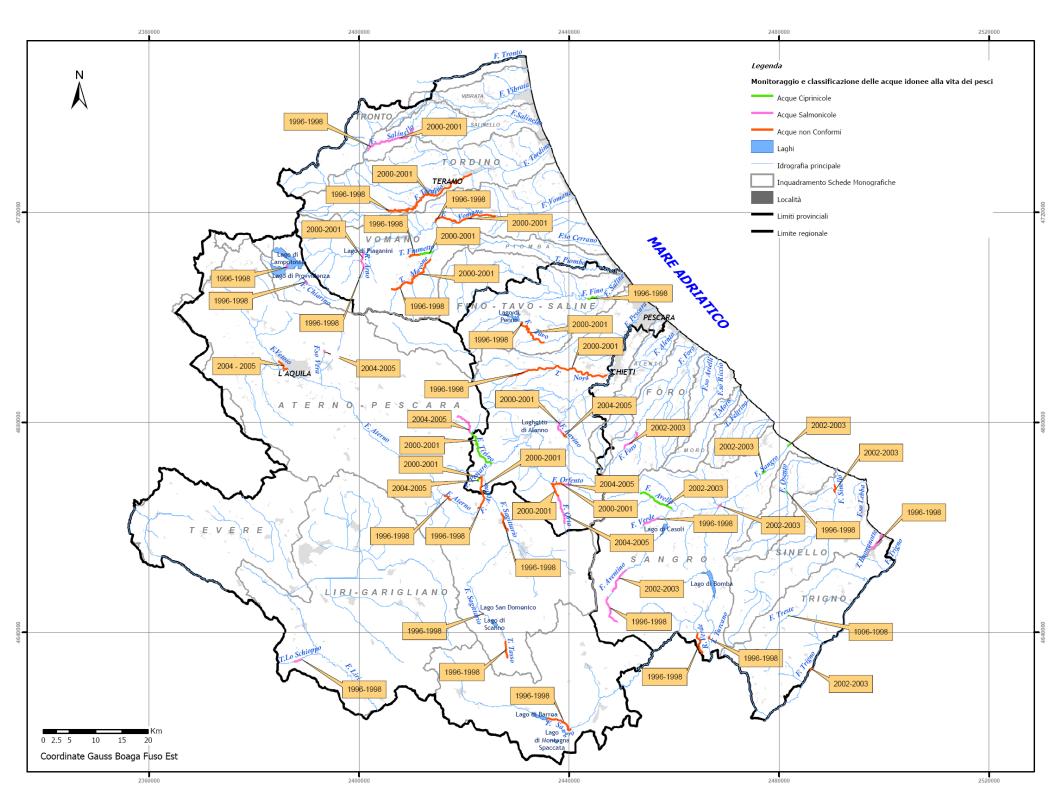


Figura 6.1: Classificazione delle acque dolci idonee alla vita dei pesci

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

6.3 Monitoraggio e classificazione delle acque destinate alla vita dei molluschi

D.Lgs. 152/06 - PARTE TERZA

Articolo 87 - Acque destinate alla vita dei molluschi

1. Le regioni, d'intesa con il Ministero delle politiche agricole e forestali, designano, nell'ambito delle acque marine costiere e salmastre che sono sede di banchi e popolazioni naturali di molluschi bivalvi e gasteropodi, quelle richiedenti protezione e miglioramento per consentire la vita e lo sviluppo degli stessi e per contribuire alla buona qualità dei prodotti della molluschicoltura direttamente commestibili per l'uomo.

Articolo 88 - Accertamento della qualità delle acque destinate alla vita dei molluschi

1. Le acque designate ai sensi dell'articolo 87 devono rispondere ai requisiti di qualità di cui alla Tabella 1/C dell'Allegato 2 alla parte terza del presente decreto.

Il monitoraggio e la classificazione delle acque destinate alla vita dei molluschi sono stati effettuati ai sensi del D.Lgs. 131/92 e del successivo D.Lgs. 152/99, i cui contenuti sono stati totalmente recepiti dal D.Lgs. 152/06.

6.3.1 Attività di monitoraggio

Le attività di monitoraggio, effettuate ai fini della classificazione delle acque marino-costiere in "acque richiedenti miglioramento e protezione ai fini della molluschicoltura", sono state affidate all'Istituto Zooprofilattico dell'Abruzzo e del Molise "G. Caporale" di Teramo e sono state condotte ai sensi dell'Allegato 2, sezione C del D.Lgs. 152/99.

Esse sono state condotte dal 1996 al 2003. Il periodo di monitoraggio analizzato in dettaglio nel presente Piano e di cui sono stati riportati i risultati nel paragrafo successivo è l'ultimo disponibile e cioè quello relativo all'anno 2002-2003.

L'area di indagine è quella prospiciente alla costa e si estende parallelamente ad essa fino alla distanza di 3000 m.

Tale area è suddivisa in n. 29 aree rettangolari con estensione variabile (**Tabella 6.2** e **Figura 6.2**).

I campionamenti all'interno di ciascun area sono stati effettuati in corrispondenza di 30 transetti perpendicolari alla linea di costa; il numero dei transetti risulta maggiore rispetto al numero delle aree individuate in quanto le foci dei Fiumi Piomba e Saline, in virtù della loro vicinanza, sono state accorpate in un'unica area.

La frequenza dei campionamenti è stata effettuata sulla base di quanto indicato nella tabella 1/C dell'Allegato 2 al D.Lgs. 152/99.

SERVIZIO QUALITA' DELLE ACQUE

Tabella 6.2 - Denominazione ed estensione delle aree in esame (cfr. Figura 6.3) (Fonte: Ordinanza n. DG11/61/2002 del 31 luglio 2002)

Denominazione delle aree	Estensione (Km ²)
foce Fiume Tronto	10,95
foce Fiume Vibrata	10,68
scarico antistante via Aldo Moro - Tortoreto	16,14
foce Fiume Salinello	9,1
foce Fiume Tordino	9,97
foce Fosso Accolle	28,74
foce Fiume Vomano	3
scarico antistante bivio sud per Pineto centro - Pineto	28,19
foce Fosso Cerrano	3
scarico antistante Hotel President - Silvi Marina	15,84
foce Torrente Piomba - foce Fiume Saline	3
foce Fosso Mazzocco	23,97
foce Fiume Pescara	3,4
foce Fosso Vallelunga	16,4
foce Fiume Alento	8,24
foce Fiume Foro	8,36
foce Fosso Chiomera	5,24
foce Fosso Arielli	3,65
foce Fosso Riccio	14,63
foce Torrente Moro	18,82
foce Torrente Feltrino	5,46
foce Fosso San Giovanni	32,25
foce Fiume Sangro	12,63
foce Fiume Osento	9,45
scarico abusivo antistante stazione FFSS - Casalbordino	7,77
foce Fiume Sinello	3
foce Fosso Apricino	20,68
foce Fosso Lebba	20,74
foce Fiume Trigno	25,17

6.3.2 Risultati

I risultati relativi al monitoraggio effettuato nel periodo 2002-2003 evidenziano quanto segue (**Figura 6.2**):

- risultano richiedenti "protezione" le acque marino-costiere comprese tra la foce del F.so
 Cerrano e del T. Piomba in corrispondenza dello scarico antistante Hotel President Silvi
 Marina, nonché i tratti prospicienti la foce del F. Sangro, F. Sinello, F.so Apricino, F.so
 Lebba, F. Trigno e il tratto di costa antistante la stazione ferroviaria di Casalbordino;
- la restante parte delle acque marino-costiere antistanti la costa abruzzese, cioè quelle non comprese nell'elenco precedente, sono classificate come acque richiedenti "miglioramento".

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La classificazione delle acque marino-costiere destinate alla vita dei molluschi è riportata nell'allegato cartografico **"Carta della classificazione delle acque destinate alla Vita dei Molluschi"** in scala 1:250.000, Tavola 2-1.

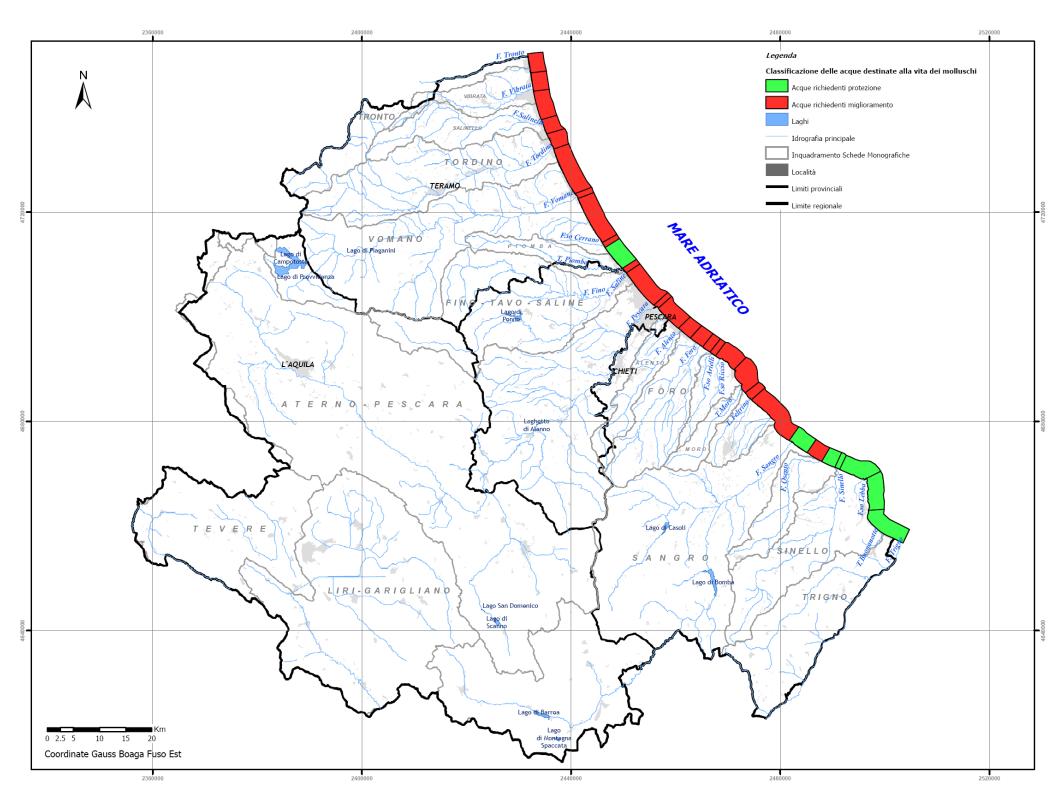


Figura 6.2: Classificazione delle acque marino-costiere ai fini della molluschicoltura

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

7. AREE RICHIEDENTI SPECIFICHE MISURE DI PREVENZIONE DALL'INQUINAMENTO E DI RISANAMENTO

7.1 Aree sensibili

D.Lgs. 152/06 - PARTE TERZA

Articolo 91 - Aree sensibili

- 1. Le aree sensibili sono individuate secondo i criteri dell'Allegato 6 alla parte terza del presente decreto. Sono comunque aree sensibili:
 - a) i laghi di cui all'Allegato 6 alla parte terza del presente decreto, nonche' i corsi d'acqua ad esse afferenti per un tratto di 10 chilometri dalla linea di costa;
 - c) le zone umide individuate ai sensi della convenzione di Ramsar del 2 febbraio 1971, resa esecutiva con decreto del Presidente della Repubblica 13 marzo 1976, n. 448;
- 2. Il Ministro dell'Ambiente e della Tutela del Territorio, sentita la Conferenza Stato-regioni, entro centoottanta giorni dalla data di entrata in vigore della parte terza del presente decreto individua con proprio decreto ulteriori aree sensibili identificate secondo i criteri di cui all'Allegato 6 alla parte terza del presente decreto.
- 4. Le regioni, sulla base dei criteri di cui al comma 1 e sentita l'Autorità di bacino, entro un anno dalla data di entrata in vigore della parte terza del presente decreto, e successivamente ogni due anni, possono designare ulteriori aree sensibili ovvero individuare all'interno delle aree indicate nel comma 2 i corpi idrici che non costituiscono aree sensibili.
- 5. Le regioni, sulla base dei criteri di cui al comma 1 e sentita l'Autorità di bacino, delimitano i bacini drenanti nelle aree sensibili che contribuiscono all'inquinamento di tali aree.
- 6. Il Ministro dell'ambiente e della tutela del territorio provvede con proprio decreto, da emanare ogni quattro anni dalla data di entrata in vigore della parte terza del presente decreto, sentita la Conferenza Stato-regioni, alla reidentificazione delle aree sensibili e dei rispettivi bacini drenanti che contribuiscono all'inquinamento delle aree sensibili.
- 7. Le nuove aree sensibili identificate ai sensi dei commi 2, 4, e 6 devono soddisfare i requisiti dell'articolo 106 entro sette anni dall'identificazione.
- 8. Gli scarichi recapitanti nei bacini drenanti afferenti alle aree sensibili di cui ai commi 2 e 6 sono assoggettate alle disposizioni di cui all'articolo 106.

Allegato 6 - Criteri per la individuazione delle aree sensibili

- Si considera area sensibile un sistema idrico classificabile in uno dei seguenti gruppi:
- **a)** laghi naturali, altre acque dolci, estuari e acque del litorale già eutrofizzati, o probabilmente esposti a prossima eutrofizzazione, in assenza di interventi protettivi specifici.
- Per individuare il nutriente da ridurre mediante ulteriore trattamento, vanno tenuti in considerazione i seguenti elementi:
 - i) nei laghi e nei corsi d'acqua si immettono in laghi/bacini/baie chiuse con scarso ricambio idrico e ove possono verificarsi fenomeni di accumulazione la sostanza da eliminare è il fosforo, a meno che non si dimostri che tale intervento non avrebbe alcuno effetto sul livello di eutrofizzazione. Nel caso di scarichi provenienti da ampi agglomerati si può prevedere di eliminare anche l'azoto;
 - ii) negli estuari, nelle baie e nelle altre acque del litorale con scarso ricambio idrico,ovvero in cui si immettono in grande quantità di nutrienti, se, da un lato, gli scarichi provenienti da piccoli agglomerati urbani sono generalmente di importanza irrilevante, dall'altro, quelli provenienti da agglomerati più estesi rendono invece necessari interventi di eliminazione del fosforo e/o azoto, a meno che non si dimostri che ciò non avrebbe comunque alcun effetto sul livello dell'eutrofizzazione;
- **b)** acque dolci superficiali destinate alla produzione di acqua potabile che potrebbero contenere, in assenza di interventi, una concentrazione di nitrato superiore 50mg/L (stabilita conformemente alle disposizioni pertinenti della direttiva 75/440 concernente la qualità delle acque superficiali destinate alla produzione di acqua potabile).
- **c)** aree che necessitano, per gli scarichi afferenti, di un trattamento supplementare al trattamento secondario al fine di conformarsi alle prescrizioni previste dalla presente norma.
- Ai sensi del comma 1 lettera a) dell'articolo 91, sono da considerare in prima istanza come sensibili i laghi posti ad un'altitudine sotto i 1000 sul livello del mare e aventi una superficie dello specchio liquido almeno di 0,3km².
- Nell'identificazione di ulteriori aree sensibili, altre ai criteri di cui sopra, le Regioni dovranno prestare attenzione a quei corpi idrici dove si svolgono attività tradizionali di produzione ittica.

Ai sensi del comma 1 lettera a) dell'Art. 91 del D.Lgs 152/06 e dell'Allegato 6 dello stesso, sono stati individuati come sensibili i seguenti laghi posti ad un'altitudine inferiore a 1000 m.s.l.m. ed

SERVIZIO QUALITA' DELLE ACQUE

i rispettivi fiumi afferenti per un tratto di 10 Km:

- Lago di Barrea e Fiume Sangro;
- Lago di Bomba e Fiume Sangro;
- Lago di Casoli e Fiume Aventino;
- Lago di Penne e Fiume Tavo;
- Lago di Scanno eTorrente Tasso.

Per quanto riguarda il Lago di Barrea, esso fa parte anche delle "zone umide" individuate ai sensi della Convenzione di Rasmar del 2 febbraio 1971 (Cfr. riquadro legislativo: art. 91, comma 1, lettera c)).

Come stabilito dalla normativa, sono stati anche individuati i bacini drenanti in tali aree sensibili.

Per ciò che concerne lo stato trofico dei laghi sopra elencati, si rimanda al paragrafo 5.1.3.8.

Al momento, sulla base dei dati disponibili, non risultano altre aree da individuare quali sensibili sulla base dei criteri di cui all'Allegato 6 sopra menzionato.

L'individuazione delle aree sensibili e dei bacini drenanti in tali aree è riportata nell'Allegato cartografico **"Carta delle aree sensibili e bacini drenanti in aree sensibili"**, in scala 1:250.000, Tavola 5-1.

7.1.1 Scarichi di acque reflue urbane in corpi idrici ricadenti in aree sensibili

D.Lgs. 152/06 - PARTE TERZA

Articolo 106 - Scarichi di acque reflue urbane in corpi idrici ricadenti in aree sensibili

1. Ferme restando le disposizioni dell'articolo 101, commi 1 e 2, le acque reflue urbane provenienti da agglomerati con oltre 10.000 abitanti equivalenti, che scaricano in acque recipienti individuate quali aree sensibili, devono essere sottoposte ad un trattamento più spinto di quello previsto dall'articolo 105, comma 3, secondo i requisiti specifici indicati nell'Allegato 5 alla parte terza del presente decreto.

In **Tabella 7.1** si riporta per tutto il territorio regionale, l'elenco degli scarichi di acque reflue urbane provenienti da agglomerati con oltre 10.000 abitanti equivalenti, che recapitano in acque individuate quali aree sensibili e nei bacini dernanti in aree sensibili.

Tabella 7.1 – Scarichi di acque reflue urbane provenienti da agglomerati con oltre 10.000 AE 32

Bacino	Agglomerato	Carico generato (AE)	Depuratore	Scarico
Sangro	Pescasseroli	11.163	Pescasseroli	Fiume Sangro
Sangro	Sangro Roccaraso - 21.374 Rivisondoli 21.374		Roccaraso - Rivisondoli	Torrente Rasine
Sangro	Castel di Sangro- Scontrone	14.495	Castel di Sangro	Fiume Sangro

_

³² Fonte: ATO

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

7.2 Zone vulnerabili da nitrati di origine agricola

D.Lgs. 152/06 - PARTE TERZA

Articolo 92 – Zone vulnerabili da nitrati di origine agricola

- 1. Le zone vulnerabili sono individuate secondo i criteri di cui all'allegato 7/A-I alla parte terza del presente decreto.
- 2. Ai fini della prima individuazione sono designate zone vulnerabili le aree elencate nell'allegato 7/A-III alla parte terza del presente decreto.
- 3. Per tener conto di cambiamenti e/o di fattori imprevisti alla data di entrata in vigore della parte terza del presente decreto, dopo quattro anni da tale data il Ministero dell'ambiente e della tutela del territorio, con proprio decreto, sentita la Conferenza Stato-regioni, può modificare i criteri di cui al comma 1.
- 4. Entro centottanta giorni dalla data di entrata in vigore della parte terza del presente decreto, sulla base dei dati disponibili e tenendo conto delle indicazioni stabilite nell'allegato 7/A-I alla parte terza del presente decreto, le regioni, sentite le Autorità di bacino, possono individuare ulteriori zone vulnerabili oppure, all'interno delle zone indicate nell'Allegato 7/A-III alla parte terza del presente decreto, le parti che non costituiscono zone vulnerabili.
- 5. Per tener conto di cambiamenti e /o fattori imprevisti al momento della precedente designazione, almeno ogni quattro anni le regioni, sentite le Autorità di bacino, possono rivedere o completare le designazioni delle zone vulnerabili. A tal fine le regioni predispongono e attuano , ogni quattro anni, un programma di controllo per verificare le concentrazioni dei nitrati nelle acque dolci per il periodo di un anno, secondo le prescrizioni di cui all'Allegato 7/A-I alla parte terza del presente decreto, nonché riesaminano lo stato eutrofico causato da azoto delle acque dolci superciali, delle acque di transizione e delle acque marine costiere.
- 6. Nelle zone individuate ai sensi dei comma 2, 4 e 5 devono essere attuati i programmi di azione di cui al comma 7, nonché le prescrizioni contenute nel codice di buona pratica agricola di cui al decreto del Ministero per le politiche agricole e forestali 19 aprile 1999, pubblicato nel Supplemento ordinario della Gazzetta Ufficiale n. 102 del 4 maggio 1999.
- 7. Entro un anno dalla data di entrata in vigore della parte terza del presente decreto per le zone designate ai sensi dei commi 2 e 4, ed entro un anno dalla data di designazione per le ulteriori zone di cui al comma 5, le regioni, sulla base delle indicazioni e delle misure di cui all'ALLEGATO 7/a-IV alla parte terza del presente decreto, definiscono, o rivedono se già posti in essere, i programmi d'azione obbligatori per la tutelare il risanamento delle acque dell'inquinamento causato da nitrati di origine agricola e provvedono alla loro attuazione nell'anno successivo per le zone vulnerabili di cui al comma 2 e 4 e nei successivi quattro anni per le zone di cui al comma 5.
- 8. Le regioni provvedono, inoltre, a:
 - a) Integrare, se del caso, in relazione alle esigenze locali, il codice di buona pratica agricola, stabilendone le modalità di applicazione;
 - b) Predisporre ed attuare interventi di formazione e di informazione degli agricoltori sul programma di azione e sul codice di buona pratica agricola;
 - c) Elaborare ed applicare , entro quattro anni a decorrere dalla definizione o revisione dei programmi di cui al comma 7, i necessari strumenti di controllo e verifica dell'efficacia dei programmi stessi sulla base dei risultati ottenuti; ove necessario, modificare o integrare tali programmi individuando, tra le ulteriori misure possibili, quelle maggiormente efficaci, tenuto conto dei costi di attuazione delle misure stesse.
- 9. Le variazioni apportate alle designazioni, i programmi d'azione, i risultati delle verifiche dell'efficacia degli stessi e le revisioni effettuate sono comunicati al Ministero dell' ambiente e della tutela del territorio, secondo le modalità indicate nel decreto di cui all'articolo 75, comma 6. Al Ministero per le politiche agricole forestali è data tempestiva notizia delle integrazioni apportate al codice di buona pratica agricola di cui al comma 8, lettera a), nonché degli interventi di formazione e informazione.
- 10. Al fine di garantire un generale livello di protezione delle acque è raccomandata l'applicazione del codice di buona pratica agricola anche al di fuori delle zone vulnerabili.

Attraverso l'utilizzo dello schema metodologico riportato nell'Allegato Monografico A1.7, "Prima individuazione delle Zone Vulnerabili da nitrati di origine agricola" è stato possibile effettuare una prima individuazione delle zone vulnerabili da nitrati di origine agricola (D.G.R. n. 332 del 21 marzo 2005, pubblicato sul BURA n. 30 del 3 giugno 2005). In particolare sono state delimitate le seguenti aree (**Tabella 7.2** e **Tabella 7.3**):

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 7.2 – Zone vulnerabili e potenzialmente vulnerabili

	Diana dal Vibrata	acquifero alluvionale	
"Zone vulnerabili"	Piana del Vibrata	Fiume Vibrata	
	Piana del Vomano	acquifero alluvionale	
"Zone potenzialmente vulnera	bili"		
a pericolosità elevata	Piana di Sulmona	acquifero fluvio-lacustre	
-	Piana del Tordino	acquifero alluvionale	
	Biomo del Biometro Colina	acquifero alluvionale	
	Piana del Piomba-Saline	Fiume Piomba	
a pericolosità media	Piana del Basso Sangro	acquifero alluvionale	
	Piana del Trigno	acquifero alluvionale	
	Piana dell'Alta Valle dell'Aterno	acquifero fluvio-lacustre	
	B' LITTER	acquifero alluvionale	
	Piana del Tronto	Fiume Tronto	
	Bi and I G I'm II	acquifero alluvionale	
	Piana del Salinello	Fiume Salinello	
	2: //2	acquifero alluvionale	
	Piana del Pescara	Fiume Pescara	
	Diama dall'Alamba	acquifero alluvionale	
	Piana dell'Alento	Fiume Alento	
	Diama dal Fama	acquifero alluvionale	
	Piana del Foro	Fiume Foro	
a pericolosità bassa	Riana dall/Quanta	acquifero alluvionale	
•	Piana dell'Osento	Fiume Osento	
	Piana del Sinello	acquifero alluvionale	
	Plana dei Sinello	Fiume Sinello	
	Diana di Castal di Canava	acquifero fluvio-lacustre	
	Piana di Castel di Sangro	Fiume Sangro	
	Piana del Tirino	acquifero fluvio-lacustre	
	Plana dei Tirino	Fiume Tirino	
	Piana di Gagliano Aterno	acquifero fluvio-lacustre	
	Piana di Oricola	acquifero fluvio-lacustre	
	Piana del Fucino (zona centrale)	acquifero fluvio-lacustre	
	Piana di Navelli	acquifero fluvio-lacustre	
non classificate	Piana del Fucino (ad esclusione della	acquifero fluvio-lacustre	
	zona centrale) e dell'Imele	acquirero nuvio-iacustre	

Tabella 7.3 – Zone di intervento interne e possibili zone di intervento

"Zone di intervento interne"					
con riferimento alle acque sotterranee e superficiali	Piana del Vibrata				
con riferimento alle acque sotterranee	Piana del Vomano				
"Possibili zone di intervento"					
esterne, con riferimento alle acque sotterranee e superficiali	Bacino del Vibrata				
esterne con riferimento alle acque sotterranee	Bacino del Vomano				
	Bacino del Piomba				
con riferimento alle acque superficiali	Bacino del Cerrano				
	Bacino del Moro				

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Sono state identificate (**Tabella 7.2** e **7.3**):

- le aree da tutelare: in cui è già presente un inquinamento generalizzato da nitrati ("zone vulnerabili" e "zone di intervento interne"), le quali dovranno essere sottoposte a programmi di azione, come previsto dal D.Lgs. 152/06 (Allegato 7 Parte A IV- "Indicazione e misure per i programmi di azione"). A tal fine è stato approvato, con D.G.R. n. 1475 del 18 dicembre 2006 (pubblicata sul BURA n. 2 Straordinario del 7 febbraio 2007), il Programma di Azione per le Zone Vulnerabili da Nitrati di origine Agricola; con D.G.R. n. 899 del 07.09.2007 è stata effettuata, in attuazione del D.Lgs 152/06, "l'Approvazione definitiva del Programma di Azione per le zone vulnerabili da nitrati di origine agricola rielaborato a seguito delle osservazioni ministeriali" (BURA n. 55 del 5/10/2007), con l'obiettivo della tutela e del risanamento delle acque dall'inquinamento causato da nitrati di origine agricola;
- le aree in cui risulta necessario prevedere ulteriori indagini: "zone potenzialmente vulnerabili a pericolosità elevata o media" (l'indicazione del grado di pericolosità definisce l'ordine di priorità nello sviluppo di studi di dettaglio) e "possibili zone di intervento".

Le modalità seguite per l'individuazione delle Zone Vulnerabili da Nitrati di origine agricola sono descritte nel documento **Allegato A 1.7 "Zone Vulnerabili da nitrati di origine agricola" e** nelle relative appendici.

Le zone vulnerabili da nitrati di origine agricola sono riportate nell'allegato cartografico "Prima individuazione delle Zone Vulnerabili da Nitrati di origine agricola (D.G.R. n. 332 del 21 marzo 2005)", in scala 1:250.000, Tavola 5-2.

Inoltre, al quadro conoscitivo, è stata allegata anche la **"Carta della vulnerabilità intrinseca all'inquinamento degli acquiferi"**, in scala 1:250.000, Tavola 5-4, che costituisce la base della metodologia utilizzata per la loro individuazione.

La prima individuazione ha consentito di determinare le problematiche da approfondire e ha fornito gli elementi sufficienti per l'indicazione delle attività da svolgere nell'ambito di studi di maggiore dettaglio, finalizzati all'affinamento delle conoscenze nelle aree caratterizzate da maggior degrado qualitativo delle acque e/o nelle zone di maggiore interesse ai fini della captazione delle risorse idriche.

A tal fine, nel Dicembre 2005, è stato attivato il progetto regionale "Monitoraggio della Direttiva Nitrati" con l'obiettivo di:

- realizzare monitoraggi e studi di maggiore dettaglio nelle aree classificate come "vulnerabili", nelle zone "potenzialmente vulnerabili a pericolosità elevata o media" e nelle "possibili zone di intervento";

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

 potenziare la rete di monitoraggio sulle altre aree caratterizzate comunque da una vulnerabilità intrinseca alta o elevata al fine di avere un quadro più completo e certo dello stato di "compromissione" dei corpi idrici superficiali e sotterranei.

Le attività del progetto sono suddivise in due fasi:

- fase conoscitiva della durata di 4 mesi: prevede oltre l'individuazione degli elementi di pericolosità connessi all'attività antropica e la verifica dei carichi inquinanti di origine agricola, zootecnica e industriale gravanti sul territorio, la definizione della rete di monitoraggio delle acque sotterranee e delle acque superficiali, integrando, dove necessario il numero dei pozzi e delle stazioni esistenti e garantendo, in questo modo, una distribuzione territorialmente omogenea.
- 2. attivazione delle reti monitoraggio ed acquisizione dei dati della durata di 24 mesi: sulle reti di monitoraggio sono previste oltre che l'analisi dei nitrati anche la misura dei livelli piezometrici e dei parametri chimici e chimico-fisici per le acque sotterranee e le misure di portata in alveo per le acque superficiali.

In particolare sono stati introdotti ulteriori 226 punti di monitoraggio delle acque sotterranee rispetto agli 85 punti della rete di monitoraggio dei Nitrati su cui è stata effettuta la prima designazione. E' inoltre in corso la realizzazione di 15 piezometri nella Piana del Fucino. Anche per le acque superficiali sono stati introdotti ulteriori 30 punti per il monitoraggio dei Nitrati.

Relazioni, elaborati cartografici e risultati analitici di tale progetto sono depositati presso gli Uffici regionali e costituiscono parte integrante del presente Piano.

La rete di monitoraggio dei nitrati è riportata nell'allegato cartografico **"Carta della rete di monitoraggio dei nitrati per i corpi idrici sotterranei e superficiali"**, in scala 1:250.000, Tavola 5-3. In essa sono indicati sia i punti utilizzati per la prima individuazione delle zone vulnerabili sia quelli facenti parte dell'attuale rete di monitoraggio dei nitrati.

Sulla base degli ulteriori risultati dei monitoraggi specifici sopra descritti condotti fino al 2010 è stato effettuato quindi l'aggiornamento della designazione delle zolne vulnerabili da nitrati di origine agricola. I risultati sono riportati nell'Appendice 3 all'elaborato A 1.7 "Zone Vulnerabili da nitrati di origine agricola": A1.7 – App.. 03 "Aggiornamento designazione zone vulnerabili da nitrati di origine agricola – monitoraggio 2010". Dall'analisi dei dati effettuata in tale elaborato risulta confermata l'individuazione delle sole due zone vulenrabili già designate: Piana del Vibrata e Piana del Vomano.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

I risultati dell'aggiornamento della individuazione delle zone vulnerabili da nitrati sono riportati nell'Appendice 3 all'elaborato A 1.7 "Zone Vulnerabili da nitrati di origine agricola": A1.7 — App.. 03 "Aggiornamento designazione zone vulnerabili da nitrati di origine agricola — monitoraggio 2010" e nell'allegato cartografico "Aggiornamento designazione Zone Vulnerabili da Nitrati di origine agricola: monitoraggio 2010", in scala 1:250.000, Tavola 5-2 bis.

7.3 Zone vulnerabili da prodotti fitosanitari e zone vulnerabili alla desertificazione

D.Lgs. 152/06 - PARTE TERZA

Articolo 93 - Zone vulnerabili da prodotti fitosanitari e zone vulnerabili alla desertificazione

- 1. Con le modalità previste dall'articolo 92, e sulla base delle indicazioni contenute nell'Allegato 7/B alla parte terza del presente decreto, le regioni identificano le aree vulnerabili da prodotti fitosanitari secondo i criteri di cui all'articolo 5, comma 21, del decreto legislativo 17 marzo 1995, n. 194, allo scopo di proteggere le risorse idriche o altri comparti ambientali dall'inquinamento derivante dall'uso di prodotti fitosanitari.
- 2. Le regioni e le Autorità di bacino verificano la presenza nel territorio di competenza di aree soggette o minacciate da fenomeni di siccità, degrado del suolo e processi di desertificazione e le designano quali aree vulnerabili alla desertificazione.
- 3. Per le aree di cui al comma 2, nell'ambito della pianificazione di distretto e della sua attuazione, sono adottate specifiche misure di tutela, secondo i criteri previsti nel Piano d'azione nazionale di cui alla delibera CIPE del 22 dicembre 1998, pubblicata nella Gazzetta Ufficiale n. 39 del 17 febbraio 1999.

7.3.1 Zone vulnerabili da prodotti fitosanitari

I prodotti fitosanitari comprendono sostanze concepite per combattere forme di vita indesiderate e, quindi, per definizione xenobiotiche e in generale pericolose per gli organismi viventi; tali sostanze possono produrre effetti indesiderati anche su organismi che non sono il bersaglio diretto della loro azione e incidere negativamente sulla qualità dell'ambiente e quindi anche della salute umana.

La presenza nelle acque di sostanze attive di prodotti fitosanitari o di derivati della loro degradazione, nelle acque superficiali e sotterranee, è stata infatti accertata da estese campagne di monitoraggio condotte in svariati luoghi nel mondo.

Al fine di individuare preliminarmente, secondo i criteri e le indicazioni dell'Allegato 7/B del D.Lgs. 152/06, eventuali "zone vulnerabili da prodotti fitosanitari" si è proceduto all'analisi dei dati di monitoraggio delle acque sotterranee di cui all'Allegato 1 del D.Lgs. 152/06. Tale esame ha evidenziato che, sulla base dei dati disponibili, non risultano evidenti situazioni di contaminazione dei corpi idrici da prodotti fitosanitari.

In parallelo, considerato che (così come previsto nell'Accordo 8 maggio 2003 tra il Ministero della Salute, dell'Ambiente e della Tutela del Territorio, le Regioni e le Province autonome di Trento e Bolzano) è necessario predisporre criteri che consentano di selezionare tra le sostanze attive quelle prioritarie in termini di più elevato rischio ambientale su cui orientare il

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

monitoraggio, si è proceduto a selezionare i principi attivi prioritari e a realizzare un'attività di monitoraggio mirata degli stessi.

Prima individuazione

Obiettivo di questa indagine preliminare è stata l'individuazione delle aree in cui siano presenti evidenti situazioni di contaminazione delle acque sotterranee da prodotti fitosanitari.

Attualmente il riferimento normativo per le acque destinate al consumo umano risulta essere il D.Lgs. 31/2001 ("Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano") che definisce i valori di parametro (Allegato 1, Parte B) per gli Antiparassitari 33 e Antiparassitari -Totale 34 , rispettivamente pari a 0.10 e 0.5 μ g/l.

Per tutte le stazioni di monitoraggio della qualità delle acque sotterranee i valori sia dei pesticidi totali che dei singoli principi attivi monitorati sono risultati al di sotto dei limiti di accettabilità previsti per le acque sotterranee; di conseguenza, ad una prima individuazione, non risultano evidenti situazioni di compromissione per quanto riguarda la presenza di fitofarmaci.

Seconda individuazione

E' stata realizzata una seconda indagine di maggior dettaglio, al fine di caratterizzare e delimitare in modo più mirato le aree potenzialmente vulnerabili ai fitofarmaci, sulle quali programmare attività di controllo sanitario e ambientale degli effetti derivanti dall'utilizzo dei prodotti fitosanitari e azioni di protezione, ossia limitazioni o esclusioni d'impiego di alcuni principi attivi considerati prioritari.

Per raggiungere tale obiettivo sono stati individuati quei principi attivi che, per il grado di utilizzo sul territorio e per le loro caratteristiche chimico-fisiche, hanno maggiori probabilità di ritrovarsi nelle acque.

Tale individuazione è stata effettuata mediante il **metodo dell'indice di priorità** (**IP**), proposto dal Gruppo di Lavoro "APAT-ARPA-APPA" ("AAAF").

Dal mese di luglio 2006 è stato quindi attivato un monitoraggio volto ad indagare la presenza delle sostanze individuate con tale metodo in corrispondenza dei punti di monitoraggio già scelti

- insetticidi organici
- erbicidi organici
- fungicidi organici
- nematocidi organici
- acaricidi organici
- alghicidi organici
- rodenticidi organici
- sostanze antimuffa organiche
- prodotti connessi (tra l'altro regolatori della crescita) e i pertinenti metaboliti, prodotti di degradazione e di reazione.

³³ Per antiparassitari s'intende:

Il controllo è necessario solo per gli antiparassitari che hanno maggiore probabilità di trovarsi in un determinato approvvigionamento d'acqua.

³⁴ Il valore di parametro si riferisce ad ogni singolo antiparassitario. Nel caso di aldrina, dieldrina, eptacloro ed eptacloro epossido, il valore parametrico è pari a 0,030 µg/l.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

per la prima rete di monitoraggio finalizzata alla ricerca del parametro "nitrati" (84 pozzi e 36 stazioni di monitoraggio della qualità fluviale): trattasi infatti di punti ubicati nelle aree caratterizzate da un'elevata vulnerabilità intrinseca degli acquiferi e da una significativa attività agricola.

L'attività di monitoraggio, avviata nel luglio 2006, ha avuto una durata di due anni ed una frequenza trimestrale, sia per le acque superficiali sia per quelle sotterranee.

Sulla base dei dati raccolti tramite il monitoraggio sopra menzionato, pur essendo state riscontrate delle positività non si è ritenuto di individuare delle aree vulnerabili da prodotti fitosanitari. Sono state comunque individuate le zone che necessitano di studi e indagini di maggior dettaglio al fine di determinarne il grado di vulnerazione. Nell'ambito dei programmi di monitoraggio attivati dal 2010 ai sensi della Direttiva 2000/60/CE (cfr. Allegato Monografico A1.9 "Individuazione dei corpi idrici superficiali ed analisi delle pressioni ai sensi del DM 131/08") su tali aree sono state previsti punti di monitoraggio integrativi.

7.3.1.1 Calcolo dell'indice di priorità per la ricerca dei residui di fitofarmaci nel comparto ambientale acqua

Il calcolo dell'indice di priorità è stato effettuato soltanto per i principi attivi venduti in Abruzzo in quantità superiori a 3 Kg annui, secondo la metodologia proposta dal Gruppo di Lavoro AAAF (vedi M. Lorenzin, "*Programmazione della ricerca dei residui di fitofarmaci nelle acque: proposta di un indice di priorità*").

Nel calcolo dell'Indice di Priorità non sono state considerate (vedi M. Lorenzin, "*Programmazione della ricerca dei residui di fitofarmaci nelle acque: proposta di un indice di priorità*") le seguenti sostanze:

- fungicidi;
- ditiocarbammati (mancozeb, maneb, metiram, propineb, zineb, ziram,metam-sodium, tiram).

Metodologia

I quattro fattori da valutare in modo combinato per la determinazione dell'IP relativo alla ricerca dei residui dei fitofarmaci nel comparto ambientale acqua sono i seguenti:

- 1. Dati di Vendita elaborati per sostanze attive;
- 2. *Tipo di Utilizzo*: per ogni sostanza attiva viene rilevato il tipo di utilizzo autorizzato in base ai decreti ministeriali; in particolare viene registrato se i trattamenti sono consentiti sul terreno, sulla coltura o su entrambi;
- 3. Distribuzione Ambientale calcolata con un modello teorico (modello Mackay livello 1);
- 4. Degradazione della Sostanza Attiva nel Suolo (DT50 Suolo).

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Ad ogni valore di ciascun fattore corrisponde un punteggio da inserire nella seguente formula di calcolo dell'indice di priorità:

$$IP = [Pv + (Pu \times Pa)] \times Pd$$

dove:

IP = Indice di Priorità

Pv = Punteggio vendite

Pu = Punteggio utilizzo

Pa = Punteggio distribuzione ambientale

Pd = Punteggio degradazione

1. Dati di Vendita

In Italia sono disponibili i dati sulla vendita dei pesticidi elaborati dal Ministero delle Politiche Agricole e Forestali tramite il SIAN (Sistema Informativo Agricolo Nazionale), per ogni Regione e Provincia, relativi ai prodotti commerciali venduti sulla base delle dichiarazioni dei rivenditori di pesticidi.

In questo studio sono stati utilizzati i dati forniti dalla Direzione Sanità della Regione Abruzzo, (dati di vendita del Gruppo AAAF – Abruzzo - anno 2000, riferiti alle sostanze attive), che riportano per l'intera Regione e per singolo principio attivo le quantità medie vendute nell'anno 2000.

Ad ogni sostanza attiva viene attribuito un punteggio (variabile da 1 a 5) in base alla sua posizione nell'elenco delle vendite, predisposto con dati decrescenti:

Posizione nell'elenco	Punteggio
1°-10° percentile	5
11°-20° percentile	4
21°-30° percentile	3
31°-50° percentile	2
51°-100° percentile	1

2. Tipo di Utilizzo

A seguire viene indicato il punteggio relativo al tipo di utilizzo della sostanza attiva usato in questa analisi (dati del Gruppo di Lavoro "APAT-ARPA-APPA", forniti dal Dott. Lorenzin, APPA di Trento):

Utilizzo	Punteggio
sul terreno	1
Terreno+coltura	0.9
coltura	0.8

3. Distribuzione Ambientale

Sono stati utilizzati i dati sulla distribuzione, espressa in "% acqua", riportati nella "Relazione 4" sulle Zone vulnerabili ai fitosanitari del PTA dell'Emilia Romagna. Nel caso di indisponibilità di valori, sono stati utilizzati i punteggi forniti dal Gruppo AAAF.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVII E

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Il modello teorico di distribuzione ambientale utilizzato è quello proposto da Mackay Livello I che calcola la ripartizione all'equilibrio della sostanza (S. Peterson, D. Mackay "The Fugacity Concept in Environmental Modelling" in "The Handbook of Environmental Chemistry" Ed. O. Hutzinger Vol. 2 Part C 1985). Il modello teorico considera sei compartimenti (aria, terreno, acqua, sedimenti, sedimenti in sospensione, pesci) alla temperatura di 298 °K (25 °C). Il Livello I del modello Mackay rappresenta il grado di minor complessità modellistica, ma permette il calcolo della distribuzione della sostanza nei diversi comparti mediante la conoscenza di alcune caratteristiche della sostanza attiva:

- a) peso molecolare;
- b) pressione di vapore;
- c) solubilità in acqua;
- d) coefficiente di ripartizione ottanolo/acqua (Kow).

Le caratteristiche chimico – fisico – ambientali (peso molecolare, pressione di vapore, solubilità in acqua, coefficiente di ripartizione ottanolo/acqua (Kow)), utilizzate per il calcolo della distribuzione ambientale secondo il modello Mackay Livello I, sono quelle riportate dal "Pesticide Manual" 11° edizione ed. C.D.S Tomlin.

Di seguito viene riportato il punteggio relativo alla distribuzione ambientale (modello Mackay Livello I):

% in acqua	Punteggio
> 99	5
80-99	4
60-80	3
30-60	2
0-30	1

4. Degradazione della Sostanza Attiva nel Suolo (DT50 Suolo)

Sono stati utilizzati i dati del gruppo di lavoro AAAF e, se mancanti, si sono utilizzati i dati disponibili sul sito internet dell'ERSAF della Lombardia (Ente Regionale per i Servizi all'Agricoltura e alle Foreste) - database SuSap (Supplying Sustainable Agriculture Production):

% in acqua	Punteggio*
DT50 ≤ 10	0.5
10 < DT50 ≤ 30	0.8
30 < DT50 < 90	1
DT50 ≥ 90	1.2

*se DT50 non disponibile punteggio 1

Risultati

I dati relativi ai prodotti fitosanitari venduti in Abruzzo comprendono 338 sostanze attive di cui 243 con quantitativi superiori ai 3 Kg. L'elenco delle sostanze su cui è stato calcolato l'Indice di Priorità è stato ottenuto eliminando le sostanze attive come zolfo, ditiocarbammati, rameici,

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

tensioattivi ecc.. L'applicazione di un foglio di lavoro appositamente predisposto ha permesso di calcolare l'indice di priorità per ciascun principio attivo per il quale esistono i dati di vendita e i dati sulle caratteristiche chimico-fisiche e di distribuzione ambientale.

Nella Tabella 7.4 si riportano i risultati del calcolo.

Tabella 7.4 - Risultati del calcolo dell'Indice di Priorità

				Vendite	Duntannia	Duntanaia	Duntania	Duntanaia	Indice di
Met	todo APAT	Sostanza	cod. attiv.	2000 (Kg)	vendite	utilizzo	acqua	Punteggio degr	priorità
1		MCPA	DIS	8592	5	1	5	1,2	12
2	APAT IRSA 5060	SIMAZINA	DIS	2952	4	1	5	1,2	10,8
3		DICLORAN	FUN	3957	5	0,9	4	1,2	10,32
4		CARBENDAZIM	FUN	1399	4	0,9	5	1,2	10,2
5		GLIFOSATE	DIS	14240	5	1	5	1	10
6		IMIDACLOPRID	INS	1602	4	0,8	5	1,2	9,6
7	APAT IRSA 5060	LINURON	DIS	3282	4	1	4	1,2	9,6
8	APAT IRSA 5060	CLOROTALONIL	FUN	1910	4	0,9	4	1,2	9,12
9		METAMITRON	DIS	1720	4	1	5	1	9
10	APAT IRSA 5060	METOLACLOR	DIS	5200	5	1	4	1	9
11		DIMETOMORF	FUN	1422	4	0,8	4	1,2	8,64
12	APAT IRSA 5060	PARATION METILE	INS	4632	5	0,9	4	1	8,6
13	APAT IRSA 5060	METALAXIL	FUN	1903	4	0,9	5	1	8,5
14		AMIDOSULFURON	DIS	375	2	1	5	1,2	8,4
15	APAT IRSA 5060	CARBOFURAN	INS	600	2	1	5	1,2	8,4
16		ETOFUMESATE	DIS	1059	3	1	4	1,2	8,4
17		LENACIL	DIS	1179	3	1	4	1,2	8,4
18	APAT IRSA 5060	OXADIXIL	FUN	1266	3	0,8	5	1,2	8,4
19		CLORIDAZON	DIS	6417	5	1	5	0,8	8
20		METRIBUZIN	DIS	945	3	1	5	1	8
21		TRIASULFURON	DIS	1060	3	1	5	1	8
22		CIROMAZINA	INS	450	2	0,9	5	1,2	7,8
23	APAT IRSA 5060	FENARIMOL	FUN	2850	4	0,8	3	1,2	7,68
24		CARBARIL	INS	12140	5	0,9	5	0,8	7,6
25		AZINFOS METILE	INS	2136	4	0,9	4	1	7,6
26		PROPAMOCARB	FUN	1322	3	0,9	5	1	7,5
27		ACEFATE	INS	6117	5	0,8	5	0,8	7,2
28		CIMOXANIL	FUN	9747	5	0,8	5	0,8	7,2
29		D-2,4	DIS	6221	5	1	4	0,8	7,2
30		FOLPET	FUN	2786	4	0,8	4	1	7,2
31		IMAZETAPIR	DIS	136	1	1	5	1,2	7,2
32	APAT IRSA 5060	PENDIMETALIN	DIS	9515	5	1	1	1,2	7,2

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Mei	todo APAT	Sostanza	cod. attiv.	Vendite 2000 (Kg)	Punteggio vendite	Punteggio utilizzo	Punteggio acqua	Punteggio degr	Indice di priorità
33		PICLORAM	DIS	43	1	1	5	1,2	7,2
34		TRALCOXIDIM	DIS	653	2	1	4	1,2	7,2
35	APAT IRSA 5060	CLORPIRIFOS	INS	5469	5	0,9	1	1,2	7,08
36	APAT IRSA 5060	ALACLOR	DIS	1037	3	1	4	1	7
37	APAT IRSA 5060	CICLOATO	DIS	3490	5	1	2	1	7
38		CLOPIRALID	DIS	378	2	1	5	1	7
39	APAT IRSA 5060	FORATE	INS	4262	5	1	2	1	7
40	APAT IRSA 5060	METOBROMURON	DIS	1117	3	1	4	1	7
41	APAT IRSA 5060	PROPIZAMIDE	DIS	1121	3	1	4	1	7
42	APAT IRSA 5060	TERBUTILAZINA	DIS	2591	4	1	3	1	7
43		BENOMIL	FUN	450	2	0,9	4	1,2	6,72
44	APAT IRSA 5060	BENALAXIL	FUN	1471	4	0,9	3	1	6,7
45		FLUROXIPIR	DIS	972	3	1	5	0,8	6,4
46		MECOPROP	DIS	920	3	1	5	0,8	6,4
47	APAT IRSA 5060	MICLOBUTANIL	FUN	517	2	0,8	4	1,2	6,24
48		PIRIMETANIL	FUN	449	2	0,8	4	1,2	6,24
49	APAT IRSA 5060	TRIADIMENOL	FUN	576	2	0,8	4	1,2	6,24
50		AZOXYSTROBIN	FUN	837	3	0,8	4	1	6,2
51		CLODINAFOP- PROPARGYL	DIS	2331	4	1	2	1	6
52		CLORTIAMID	DIS	30	1	1	5	1	6
53		DICAMBA	DIS	43	1	1	5	1	6
54		DIMETENAMID	DIS	239	1	1	4	1,2	6
55		DIQUAT	DIS	102	1	1	5	1	6
56		DIURON	DIS	220	1	1	4	1,2	6
57		FENMEDIFAM	DIS	820	3	1	3	1	6
58		FOMESAFEN GLUFOSINATE	DIS	16	1	1	4	1,2	6
59		AMMONIO	DIS	147	1	1	5	1	6
60		IMAZAMETABENZ	DIS	525	2	1	<u>4</u> 5	1	6 6
62	APAT IRSA	IOXINIL LINDANO	INS	118 43	1	1	4	1,2	6
63	5060 APAT IRSA 5060	METALAXIL-M	FUN	598	2	0,8	5	1	6
64	3000	METOMIL	INS	431	2	0,8	5	1	6
65		PARAQUAT	DIS	278	1	1	5	1	6
66	APAT IRSA 5060	PROMETRINA	DIS	200	1	1	4	1,2	6
67	3000	TRICLORFON	INS	1064	3	0,9	5	0,8	6
68	APAT IRSA 5060	TRIFLURALIN	DIS	3613	5	1	1	1	6
69		TRICLOPIR	DIS	25	1	1	5	1	6

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Met	todo APAT	Sostanza	cod. attiv.	Vendite 2000 (Kg)	Punteggio vendite	Punteggio utilizzo	Punteggio acqua	Punteggio degr	Indice di priorità
70		BENTAZONE	DIS	677	2	1	5	0,8	5,6
71	APAT IRSA 5060	PIRIMICARB	INS	975	3	0,8	5	0,8	5,6
72		DITIANON	FUN	375	2	0,9	4	1	5,6
73	APAT IRSA 5060	PARATION	INS	10934	5	0,9	2	0,8	5,44
74		DODINA	FUN	725	2	0,9	5	0,8	5,2
75		CIPROCONAZOLO	FUN	46	1	0,8	4	1,2	5,04
76	APAT IRSA 5060	NUARIMOL	FUN	180	1	0,8	4	1,2	5,04
77		ALDICARB	INS	191	1	0,8	5	1	5
78		FENCLORAZOL ETILE		10	1	1	4	1	5
79		FLUCITRINATE	INS	23	1	0,8	5	1	5
80		FURATIOCARB	INS	2130	4	1	1	1	5
81		ISOXAFLUTOLE	DIS	74	1	1	4	1	5
82		METOSULAM	DIS	14	1	1	4	1	5
83		PROPOXUR	INS	1	1	0,8	5	1	5
84	APAT IRSA 5060	ENDOSULFAN	INS	1926	4	0,9	1	1	4,9
85		CICLOXIDIM	DIS	42	1	1	5	0,8	4,8
86		DICLOROPROPENE -1,3	DN	14905	5	1	1	0,8	4,8
87		DNOC	DIS	150	1	1	5	0,8	4,8
88		NICOSULFURON	DIS	8	1	1	5	0,8	4,8
89	APAT IRSA 5060	PROPACLOR	DIS	65	1	1	5	0,8	4,8
90		SETOSSIDIM	DIS	80	1	1	5	0,8	4,8
91		TIFENSULFURON METILE	DIS	100	1	1	5	0,8	4,8
92	APAT IRSA 5060	DICLOBENIL	DIS	216	1	1	3	1,2	4,8
93		DICOFOL	ACA	2017	4	0,8	1	1	4,8
94		NAPROPAMIDE	DIS	84	1	1	3	1,2	4,8
95	454T 1564	DIMETOATO	IA	12941	5	0,9	5	0,5	4,75
96	APAT IRSA 5060	CLORPIRIFOS METILE	INS	3763	5	0,8	1	0,8	4,64
97		ETIOFENCARB	INS	46	1	0,9	4	1	4,6
98		METIOCARB	IM	226	1	0,9	4	1	4,6
99		FOSETIL ALLUMINIO	FUN	8783	5	0,8	5	0,5	4,5
100		TRIBENURON METILE	DIS	2225	4	1	5	0,5	4,5
101	APAT IRSA 5060	IPRODIONE	FUN	375	2	0,9	4	0,8	4,48
102	APAT IRSA 5060	MALATION	INS	311	2	0,9	4	0,8	4,48
103		ANTRACHINONE	REP	400	2	0,8	3	1	4,4
104	ADAT IDCA	FLUSILAZOL	FUN	339	2	0,8	2	1,2	4,32
105	APAT IRSA 5060	PENCONAZOLO	FUN	773	2	0,8	2	1,2	4,32
106		TEBUCONAZOLO	FUN	804	2	0,8	2	1,2	4,32

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Met	todo APAT	Sostanza	cod. attiv.	Vendite 2000 (Kg)	Punteggio vendite	Punteggio utilizzo	Punteggio acqua	Punteggio degr	Indice di priorità
107		EXITIAZOX	ACA	40	1	0,8	4	1	4,2
108		FENPROPIDIN	FUN	38	1	0,8	4	1	4,2
109	APAT IRSA 5060	EPTENOFOS	INS	599	2	0,8	4	0,8	4,16
110	APAT IRSA 5060	METIDATION	INS	714	2	0,8	4	0,8	4,16
111		FENBUCONAZOLO	FUN	40	1	0,8	3	1,2	4,08
112		FENTIN ACETATO	FUN	216	1	0,8	3	1,2	4,08
113		FENTIN IDROSSIDO	FUN	107	1	0,8	3	1,2	4,08
114		ACLONIFEN	DIS	1192	3	1	1	1	4
115		CLORMEQUAT (CLORURO)	INS	82	1	0,8	5	0,8	4
116		DESMEDIFAM	DIS	31	1	1	3	1	4
117		METAMIDOFOS	IA	98	1	0,8	5	0,8	4
118		OSSIDEMETON METILE	INS	37	1	0,8	5	0,8	4
119		PROPARGITE	ACA	285	2	0,8	2	1	3,6
120		HALOXIFOP ETOSSIETILE	DIS	335	2	1	1	1,2	3,6
121	APAT IRSA 5060	ISOFENFOS	INS	43	1	1	2	1,2	3,6
122		DAZOMET	IFD	692	2	1	5	0,5	3,5
123		TETRACONAZOLO	FUN	125	1	0,8	3	1	3,4
124	APAT IRSA 5060	PIRIDAFENTION	INS	92	1	0,8	4	0,8	3,36
125	APAT IRSA 5060	PROCLORAZ	FUN	32	1	0,9	2	1,2	3,36
126		QUINOXIFEN	FUN	329	2	0,8	1	1,2	3,36
127	APAT IRSA 5060	TRIADIMEFON	FUN	8	1	0,8	4	0,8	3,36
128	APAT IRSA 5060	FENITROTION	INS	2225	4	0,9	3	0,5	3,35
129	APAT IRSA 5060	PROCIMIDONE	FUN	2900	4	0,9	3	0,5	3,35
130	APAT IRSA 5060	ETOPROFOS	IN	248	1	1	3	0,8	3,2
131		FOXIM	INS	66	1	1	3	0,8	3,2
132	APAT IRSA 5060	FENAMIFOS	NEM	10	1	1	3	0,8	3,2
133	APAT IRSA 5060	BITERTANOLO	FUN	16	1	0,8	2	1,2	3,12
134		BUPIRIMATE	FUN	26	1	0,8	2	1,2	3,12
135	APAT IRSA 5060	ESACONAZOLO	FUN	82	1	0,8	2	1,2	3,12
136		FLUDIOXONIL	FUN	25	1	0,8	2	1,2	3,12
137	APAT IRSA 5060	PROPICONAZOLO	FUN	25	1	0,8	2	1,2	3,12
138		DELTAMETRINA	INS	1178	3	0,8	1	0,8	3,04
139		CARBOSSINA	FUN	440	2	1	4	0,5	3
140		DICLOFOP METILE	DIS	568	2	1	1	1	3
141		GLIFOSATE TRIMESIO	DIS	39	1	1	5	0,5	3

DIREZIONE LAVO

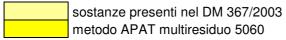
REGIONE ABRUZZO

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Met	todo APAT	Sostanza	cod. attiv.	Vendite 2000 (Kg)	Punteggio vendite	Punteggio utilizzo	Punteggio acqua	Punteggio degr	Indice di priorità
142		HALOXIFOP-R- METILESTERE	DIS	53	1	1	2	1	3
143		MEFENPIR-DIETILE	DIS	51	1	1	2	1	3
144	APAT IRSA 5060	OXIFLUORFEN	DIS	488	2	1	1	1	3
145		DINOCAP	AF	19837	5	0,8	1	0,5	2,9
146	APAT IRSA 5060	TOLCLOFOS METILE	FUN	420	2	0,9	1	1	2,9
147		FAMOXADONE	FUN	559	2	0,8	1	1	2,8
148		FIPRONIL	INS	18	1	0,9	2	1	2,8
149		FLUMETRALIN	ANT	418	2	0,8	1	1	2,8
150		LAMBDA CIALOTRINA	INS	345	2	0,8	1	1	2,8
151	APAT IRSA 5060	TETRADIFON	ACA	764	2	0,8	1	1	2,8
152		FENOTIOCARB	IA	30	1	0,8	3	0,8	2,72
153		CAPTANO	FUN	645	2	0,8	4	0,5	2,6
154		CIPRODINIL	FUN	38	1	0,8	2	1	2,6
155		FLUFENOXURON	IA	28	1	0,8	2	1	2,6
156		PIRIFENOX	FUN	42	1	0,8	2	1	2,6
157		FORMOTION	INS	264	1	0,8	5	0,5	2,5
158		OMETOATO	IA	100	1	0,8	5	0,5	2,5
159	APAT IRSA 5060	TERBUFOS	INS	161	1	1	2	0,8	2,4
160	APAT IRSA 5060	BENFLURALIN	DIS	154	1	1	1	1,2	2,4
161	APAT IRSA 5060	DICLOFLUANIDE	FUN	960	3	0,9	2	0,5	2,4
162	APAT IRSA 5060	FOSALONE	IA	811	3	0,8	2	0,5	2,3
163	APAT IRSA 5060	ALFAMETRINA	INS	40	1	0,8	1	1,2	2,16
164		FENAZAQUIN	ACA	101	1	0,8	1	1,2	2,16
165		TEBUFENOZIDE	INS	138	1	0,8	1	1,2	2,16
166		DIFLUBENZURON	INS	10	1	0,8	2	0,8	2,08
167	APAT IRSA 5060	PIRAZOFOS	FUN	150	1	0,8	2	0,8	2,08
168		BROMOXINIL OTTANOATO	DIS	1179	3	1	1	0,5	2
169	APAT IRSA 5060	DINITRAMINA	DIS	125	1	1	1	1	2
170		FENOXAPROP-P ETILE	DIS	120	1	1	1	1	2
171		PROPAQUIZAFOP	DIS	49	1	1	1	1	2
172		QUIZALOFOP ETILE D-ISOMERO	DIS	16	1	1	1	1	2
173	APAT IRSA 5060	BROMOPROPILATO	ACA	25	1	0,9	1	1	1,9
174	APAT IRSA 5060	DIAZINONE	IA	197	1	0,9	3	0,5	1,85
175		ACRINATRINA	IA	68	1	0,8	1	1	1,8
176		CIFLUTRIN	INS	115	1	0,8	1	1	1,8
177		CIPERMETRINA	INS	165	1	0,8	1	1	1,8


DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,
PROTEZIONE CIVII E

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Met	todo APAT	Sostanza	cod. attiv.	Vendite 2000 (Kg)	Punteggio vendite	Punteggio utilizzo	Punteggio acqua	Punteggio degr	Indice di priorità
178		ESAFLUMURON	INS	57	1	0,8	1	1	1,8
179	APAT IRSA 5060	FENTION	INS	97	1	0,8	1	1	1,8
180		LUFENURON	INS	11	1	0,8	1	1	1,8
181	APAT IRSA 5060	PERMETRINA	INS	35	1	0,8	1	1	1,8
182		PIRETRINE	INS	28	1	0,8	1	1	1,8
183		TRIFLUMURON	INS	79	1	0,8	1	1	1,8
184		FLUAZIFOP-P BUTILE	DIS	146	1	1	1	0,8	1,6
185		TEFLUTRIN	INS	11	1	1	1	0,8	1,6
186		DICLORVOS	INS	145	1	0,9	1	0,8	1,52
187	APAT IRSA 5060	PIRIMIFOS METILE	INS	150	1	0,9	1	0,8	1,52
188		BENFURACARB	INS	545	2	1	1	0,5	1,5
189		CLOQUINTOCET MEXYL	DIS	578	2	1	1	0,5	1,5
190		AMITRAZ	IA	22	1	0,8	1	0,8	1,44
191		BIFENTRIN	IA	74	1	0,8	1	0,8	1,44
192		PIPERONIL BUTOSSIDO	SINERG	125	1	0,8	1	0,8	1,44
193	APAT IRSA 5060	QUINALFOS	INS	100	1	0,8	1	0,8	1,44
194		ETOFENPROX	INS	720	2	0,8	1	0,5	1,4
195	APAT IRSA 5060	FLUVALINATE	INS	471	2	0,8	1	0,5	1,4
196		CHINOMETIONATO	IAF	4	1	0,8	2	0,5	1,3
197	APAT IRSA 5060	CLORPROFAM	DIS	86	1	0,9		1	

<u>Legenda:</u>

Poiché i dati di vendita utilizzati sono relativi all'anno 2000, la tabella 1 comprende le sole sostanze presenti nell'elenco delle vendite. E' pertanto necessario integrarla con:

- 1. le sostanze attive storiche appartenenti alla classe degli insetticidi clororganici utilizzati fino agli anni 60 e molto persistenti nel suolo: aldrin, eptacloro, DDT;
- 2. i metaboliti più importanti: dieldrin, eptacloro epossido, DDD, DDE;
- 3. i residui ricompresi nel D.M. 367/2003 per i quali non vi sono dati di vendita (almeno fino all'anno 2000);
- 4. le sostanze che, secondo le elaborazioni fornite dal Gruppo di lavoro APAT-ARPA-APPA, risultano più frequentemente ritrovate nelle acque superficiali (terbutilazina, metolaclor, oxadiazon, atrazina, dimetanamide) e nelle acque sotterranee (atrazina, terbutilazina, simazina, bromacile) e che sono utilizzate in coltivazioni presenti in Abruzzo.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Occorre inoltre ricordare che sono già in corso i programmi di monitoraggio delle acque superficiali e sotterranee (Allegato 1 D.Lgs. 152/99) nella Regione Abruzzo.

Le considerazioni sopra esposte permettono di formulare un ulteriore elenco di residui di fitofarmaci (**Tabella 7.5**) da integrare con quelli individuati in **Tabella 7.4**. Le sostanze evidenziate in giallo appartengono all'elenco delle sostanze prioritarie di cui al D.M. 367/2003.

Tabella 7.5 - Elenco di fitofarmaci da integrare con l'elenco di **Tabella 7.4** per individuare la lista dei composti prioritari da ricercare nelle acque superficiali e sotterranee dell'Abruzzo.

Sostanza attiva	N.Ritrovamenti / N.Campioni ¹					
ALDRIN	1/4690					
AMETRINA	8/3078					
ATRAZINA	937/11955					
ATRAZINA DESETIL	826/5918					
ATRAZINA DEISOPROPIL	48/3620					
ISODRIN	3/2067					
DIELDRIN	7/4596					
ENDRIN	3/3462					
DD's	8/16651					
ENDOSULFAN II	3/1053					
ENDOSULFAN SOLFATO	11/1640					
ESACLOROBENZENE	2/3479					
LENACIL	12/233					
OXADIAZON	343/5971					
PROPAZINA	26/4329					
TERBUTILAZINA DESETIL	618/5769					
DICLOROBENZAMIDE, 2, 6-(met)	147/1272					
DIMETANAMID	94/1138					

¹ I dati relativi al numero delle positività sul numero dei campioni analizzati sono riferite alle elaborazioni sui dati 2003 del gruppo di lavoro AAAF

L'integrazione fra le due tabelle e l'ulteriore taglio effettuato secondo le valutazioni di seguito riportate permettono quindi di individuare la lista dei composti prioritari da ricercare nelle acque superficiali e sotterranee regionali abruzzesi.

Come primo criterio generale la ricerca dei residui di fitofarmaci nelle acque ha privilegiato inizialmente quei principi attivi con punteggio di distribuzione ambientale elevato, anche per consentire agli strumenti la rilevazione dei residui. Sui principi attivi per i quali è stato possibile calcolare l'Indice di Priorità sono state effettuate ulteriori considerazioni per selezionare un numero di parametri da monitorare sufficientemente rappresentativo.

In particolare la selezione delle sostanze è stata effettuata in base ai seguenti criteri:

 Elevato indice di priorità: sono privilegiati i residui di fitofarmaci risultati ad elevato indice di priorità o perché utilizzati in regione in considerevole quantità o per il loro comportamento chimico-fisico (IP≥6).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- Appartenenza all'elenco delle sostanze prioritarie di cui al D.M. 367/2003: tra le sostanze con indice di priorità inferiore sono favorite quelle riportate sull'elenco delle sostanze prioritarie di cui al D.M. 367/2003.
- Dati storici di ritrovamento nelle regioni italiane: i dati storici sulla ricerca dei fitofarmaci effettuata dai laboratori pubblici ed elaborati del gruppo di lavoro AAAF permettono di operare una ulteriore scrematura. I dati ai quali si è fatto riferimento sono quelli relativi ai monitoraggi in acque superficiali e sotterranee riferiti all'anno 2003 di pubblicazione.
- Esistenza di metodi analitici per la determinazione dei residui. Sono stati esaminati i metodi analitici per la determinazione dei residui di fitofarmaci nelle acque, pubblicati da APAT, IRSA – CNR ed EPA.

Il risultato delle valutazioni sopra esposte ha permesso di selezionare le sostanze fitosanitarie da ricercare prioritariamente nelle acque (**Tabella 7.6**).

Tabella 7.6 - Elenco dei fitofarmaci da ricercare prioritariamente

	7.0 - Lienco dei nitorarmaci da ricercare prioritariamente
N	Sostanza
1	SIMAZINA
2	LINURON
3	CLOROTALONIL
4	METOLACLOR
5	PARATION METILE
6	METALAXIL
7	CARBOFURAN
8	OXADIXIL
9	FENARIMOL
10	PENDIMETALIN
11	CLORPIRIFOS
12	ALACLOR
13	CICLOATO
14	FORATE
15	METOBROMURON
16	PROPIZAMIDE
17	TERBUTILAZINA
18	BENALAXIL
19	MICLOBUTANIL
20	TRIADIMENOL
21	LINDANO
22	METALAXIL-M
23	PROMETRINA
24	TRIFLURALIN
25	ALDRIN
26	AMETRINA
27	ATRAZINA
28	ISODRIN
29	DIELDRIN
30	ENDRIN

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

N	Sostanza				
36	DD's (n. 6 composti)				
37	ENDOSULFAN II				
38	ENDOSULFAN SOLFATO				
39	ESACLOROBENZENE				
40	OXADIAZON				
41	PROPAZINA				
42	TERBUTILAZINA DESETIL				
43	EPTACLORO				
44	PARATION ETILE				
45	FENITROTION				
46	ISOMERI ESACLOROCICLOESANO				

I risultati del monitoraggio hanno permesso di evidenziare l'esistenza o meno di zone caratterizzate dalla presenza delle suindicate sostanze fitosanitarie e di tarare su tali parametri programmi di monitoraggio attivati dal 2010.

In futuro risulterà comunque necessario ottimizzare la lista dei composti da individuare, in termini sia di inserimento nei protocolli di ricerca di principi attivi aggiuntivi, sia di eliminazione di quelli che non saranno ritrovati nel corso del monitoraggio.

Parallelamente si dovrà valutare l'inserimento nei piani di monitoraggio di:

- 1. sostanze attive di recente autorizzazione;
- 2. sostanze attive (ditiocarbammati, zolfo, polisolfuri, prodotti rameici) non incluse nell'applicazione dell'Indice di Priorità;
- 3. sostanze attive per le quali non è stato possibile calcolare la distribuzione ambientale secondo il modello Mackay Livello I.

7.3.2 Zone vulnerabili alla desertificazione

Il presente paragrafo riveste la funzione di linea guida per una futura e più dettagliata trattazione dell'argomento, da esplicarsi nelle successive fasi revisionali del presente Piano di Tutela.

La Convenzione Internazionale sulla desertificazione (UNCCD – United Nation Convention to Combat Desertification) definisce la desertificazione come "il degrado del territorio nelle zone aride, semi-aride e sub-umide secche attribuibile a varie cause, fra le quali variazioni climatiche e attività umane". Tale definizione contiene alcuni concetti chiave di carattere profondamente innovativo:

- 1. le cause possono essere sia di origine naturale sia di origine antropica;
- 2. il degrado viene inteso non solo come perdita delle caratteristiche bio-chimico-fisiche, ma anche della redditività economica;
- 3. le zone aride, semi-aride, sub-umide secche, individuano le aree del pianeta maggiormente vulnerabili che, pertanto, richiedono interventi urgenti.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVII E

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Pertanto, nel bacini del Mediterraneo, quando si parla di desertificazione non ci riferisce ai deserti, ma a rilevanti processi di degrado delle risorse naturali, in particolare suolo, acqua e vegetazione. Le cause naturali della desertificazione sono connesse principalmente ai cambiamenti climatici. Per l'Italia, i più rilevanti impatti ambientali dovuti ai previsti cambiamenti climatici in area mediterranea si verificheranno:

- sulle zone costiere a causa dall'innalzamento del livello del mare;
- sulle aree territoriali agricole o destinate ad attività produttive a causa del degrado dei suoli per erosione, perdita di sostanze organiche e per acidificazione;
- sulla biodiversità ed il paesaggio naturale biotico a causa dallo spostamento verso nord degli ecosistemi;
- sui settori produttivi maggiormente dipendenti dalle condizioni climatiche e sul benessere sociale, a causa del previsto aumento sia dell'intensità sia della frequenza di fenomeni meteorologici estremi.

Tali impatti potrebbero avere profonde implicazioni soprattutto sulla produzione agricola, la produzione industriale, il turismo, la salute umana e non ultimo il settore assicurativo.

Quindi, oltre alla variabilità climatica, in generale va tenuto conto del degrado del suolo (fenomeni di erosione, ruscellamento, salinizzazione, aridificazione e perdita nutrienti) e delle modifiche agli ecosistemi forestali (sensibili sia alle variazioni climatiche sia agli incendi boschivi); mentre per quanto concerne i settori produttivi ed il benessere sociale, i previsti cambiamenti climatici tenderanno ad acutizzare la pressione antropica sulle risorse idriche.

Le principali pressioni antropiche che possono incidere sulla desertificazione sono legate alle attività produttive e ai loro impatti: agricoltura, zootecnia, gestione delle risorse forestali, incendi boschivi, industria, urbanizzazione, turismo, discariche, attività estrattive.

Per l'Italia, la Commissione Europea per l'Ambiente ha stimato che un 25-30% della superficie di terreno è minacciata da fenomeni di erosione e salinizzazione. Tutte le Regioni meridionali sono interessate da fenomeni associati al degrado del suolo, quindi con il rischio di processi di desertificazione a lungo termine. I processi di degrado attualmente registrati in Italia, in base a studi recenti, risultano localizzati principalmente nel sud d'Italia e nelle zone aride, semi-aride e sub-umide secche di almeno 4 regioni: Sicilia, Sardegna, Puglia e Basilicata. Pertanto, in ciascuna delle regioni sopra citate sono state individuate e perimetrate le aree sensibili ed al momento sono in corso studi e progetti vari.

Nel caso specifico, per la Regione Abruzzo, allo stato attuale, non risultano individuate e perimetrate aree vulnerabili alla desertificazione.

Tuttavia, pur non presentando attualmente sintomi evidenti di desertificazione, l'INEA (Istituto Nazionale di Economia Agraria) ha effettuato un'analisi e redatto un conseguente rapporto (2002) sullo stato dell'irrigazione dell'intera regione che contiene lo studio del fenomeno di desertificazione, redatto sulla base dell'indice di aridità di De Martonne ed incentrato sostanzialmente sulle aree pedo-appenniniche e costiere.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

I fenomeni associati alla desertificazione, da inquadrare in relazione alle caratteristiche geopedologiche, alla morfologia, al tipo e all'intensità di sfruttamento antropico, relativamente alla realtà abruzzese, sono:

- prolungamento dei periodi di siccità;
- presenza di suoli ad alto rischio di erodibilità;
- alta frequenza ed estensione degli incendi boschivi e riduzione della copertura vegetale;
- salinizzazione dei suoli;
- abbandono colturale di vaste aree divenute extramarginali.

In relazione ai processi descritti, sebbene l'Abruzzo non risulti attualmente colpito dal fenomeno, presenta forme e principi di degrado, in particolare rispetto ai problemi di dissesto idrogeologico ed erosione del suolo, alla gestione e alla qualità dell'acqua utilizzata e all'abbandono delle aree extramarginali.

In questo contesto, l'agricoltura irrigua, associata a scelte produttive e pratiche compatibili e ad una più corretta gestione dell'acqua, potrebbe avere un importante ruolo al fine di sottrarre parti del territorio a rischio di degrado o abbandono.

A tale proposito, viene di seguito sintetizzato lo studio condotto dal CO.T.IR. - Consorzio per la Sperimentazione e la Divulgazione delle Tecniche Irrigue sull'indice di aridità di De Martonne nei Consorzi di Bonifica Nord, Centro e Sud (**Figura7.1**). L'indice di aridità viene spesso utilizzato nella valutazione dei rischi di desertificazione, ma va specificato che l'aridità è legata, per definizione, alle caratteristiche climatiche del territorio e non va quindi confusa con il concetto di siccità, che rappresenta invece una riduzione delle precipitazioni rispetto al dato climatico atteso. Pertanto è importante studiare l'evoluzione del clima e l'andamento delle piogge anche in una regione "ricca d'acqua" come l'Abruzzo.

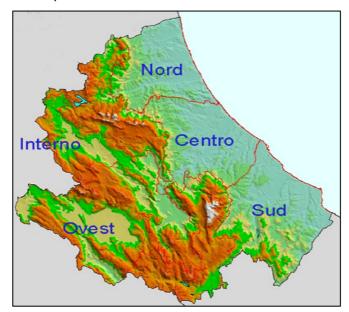


Figura 7.1: Consorzi di Bonifica

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

In funzione dei valori assunti dall'indice di aridità di De Martonne, che caratterizza un territorio sulla base della temperatura e della precipitazione media annua³⁵, in **Tabella 7** si propone la classificazione climatica di De Martonne.

Tabella 7.7 - Classificazione climatica di De Martonne

Valori dell'Indice di Aridità	Tipo di clima
40	Umido
40-30	Temperato umido
30-20	Temperato caldo
20-10	Semiarido
10-5	Steppa

L'area del **Consorzio di Bonifica Nord** presenta un clima con lineamenti generali tipici di quello mediterraneo, è influenzato da elementi quali l'altimetria, l'assetto morfologico e la posizione geografica rispetto alla costa adriatica ed all'arco appenninico. Da un punto di vista generale, schematizzando i dati relativi alla piovosità ed alla temperatura media annua degli ultimi vent'anni, si possono delineare i seguenti caratteri climatici:

- la fascia costiera per una larghezza di 15-20 km, ha caratteristiche climatiche uniformi, con clima passante dal sublitoraneo al marittimo, con piovosità di 700-850 mm/anno e temperature medie comprese tra i 16 e 13 C°;
- le piogge sono concentrate nei mesi invernali, con estati secche e stagioni intermedie poco piovose e una piovosità media annua di circa 750 mm;
- nell'interno del consorzio, a clima sublitoraneo appenninico, le precipitazioni crescono con l'aumentare dell'altimetria, fino ad arrivare a punte massime di 1500 mm in corrispondenza del Gran Sasso.

Infine, relativamente ai bacini idrografici dei fiumi Vomano e Tordino, dove sono ubicati gli impianti irrigui, si riportano i dati medi (**Tabella 7.** e **Tabella 7.9**), relativi al periodo 1990/1997, di temperatura e piovosità e dell'indice di aridità, rilevati dalle stazioni termo-pluviometriche di Roseto degli Abruzzi (160 m s.l.m., baricentrica rispetto alle due vallate) e Giulianova (650 m s.l.m. situata in prossimità del limite nord del comprensorio del Tordino). Poiché sono classificati aridi i mesi con l'indice inferiore a 20, ne risulta che tale situazione si verifica per entrambe le stazioni di rilevamento nei mesi di maggio, giugno, luglio e agosto, compresi all'interno del riquadro rosso. I valori di aridità annuali indicano le stazioni a clima temperato-caldo.

QUADRO_CONOSCITIVO 238

_

Secondo la seguente formula: IA=P/(T+10), dove IA=indice di aridità, P=precipitazione media annua, T=temperatura media annua

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 7.8- Temperatura, precipitazioni e indice di aridità relativi alla stazione di Giulianova

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Anno
Temperatura Media (°C)	6,8	6,4	9,5	12,5	17,1	20,9	24,0	24,3	20,6	16,8	11,4	7,9	14,9
Precipitazione media (mm)	41,2	31,6	43,9	47,6	33,7	33,9	28,3	31,6	57,0	66,8	63,1	58,7	44,8
Indice di De Martonne	29,4	23,2	27,0	25,4	14,9	13,1	10,0	11,0	22,3	29,9	35,4	39,4	23,4

Fonte: Elaborazione C.O.T.I.R. su dati forniti dal CAR- A.R.S.-S.A. e dal Servizio Idrografico e Mareografico di Pescara

Tabella 7.9 - Temperatura, precipitazioni e indice di aridità relativi alla stazione di Roseto degli Abruzzi

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Anno
Temperatura Media (°C)	7,4	7,4	10,4	13,0	17,9	21,9	25,3	25,9	21,3	17,2	12,3	8,3	15,7
Precipitazione media (mm)	51,7	36,0	38,5	48,7	43,4	30,9	34,1	40,3	56,6	76,8	79,1	71,9	50,7
Indice di De Martonne	35,6	24,9	22,6	25,4	18,7	11,6	11,6	13,5	21,7	33,9	42,6	47,0	25,8

Fonte: Elaborazione C.O.T.I.R. su dati forniti dal CAR- A.R.S.-S.A. e dal Servizio Idrografico e Mareografico di Pescara

L'area del **Consorzio di Bonifica Centro** presenta un clima tipico della costa del medio Adriatico e risente notevolmente dell'effetto termo-regolatore dovuto alla vicinanza col mare.

I valori pluviotermometrici dell'intera regione sono forniti con esattezza da una serie di stazioni uniformemente distribuite nel territorio consortile. Sono stati analizzati i dati di temperatura e precipitazioni del periodo dal 1944 al 1973. Precisamente, si è calcolato il valore medio delle stazioni di Pescara, Alanno, Cepagatti e Chieti (rappresentative del territorio consortile), mensile e annuale, dei parametri temperatura e precipitazione, nonché dell'indice di aridità (**Tabella7.10**).

La temperatura media mensile riscontrata oscilla da un minimo di circa 6°C, nel mese di gennaio, ad un massimo di circa 24°C, nei mesi luglio ed agosto. Le medie annuali sono sui 15°C. Raramente in inverno si scende sotto lo zero ed in estate si supera i 35°C. Abbastanza sporadiche risultano le gelate primaverili. Le precipitazioni nel corso dell'anno raramente superano i 900 mm e oscillano mediamente da 750 a 800 mm. Durante la stagione irrigua maggio-settembre le precipitazioni presentano un valore medio di 277 mm di pioggia. Infine, si osserva che l'aridità è maggiore nei mesi di giugno, luglio, agosto (indice inferiore a 20).

Tabella 7.10 - Temperatura, precipitazioni e indice di aridità del Consorzio Centro (stazioni di Pescara, Alanno, Cepagatti e Chieti)

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Anno
Temperatura Media (°C)	6,2	7,4	9,5	13,3	17,7	21,6	24,1	24,2	20,7	15,8	11,7	7,9	14,9
Precipitazione media (mm)	84,0	65,5	77,6	72,2	61,7	46,3	40,8	48,7	79,8	99,5	96,7	115,7	890,3
Indice di De Martonne	62,2	45,2	47,8	37,2	26,7	17,6	14,4	17,1	31,2	46,3	53,5	77,6	35,8

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Fonte: Elaborazione C.O.T.I.R. su dati forniti dal CAR- A.R.S.-S.A. e dal Servizio Idrografico e Mareografico di Pescara

Per quanto riguarda l'area del <u>Consorzio di Bonifica Sud</u>, l'analisi è stata svolta sui parametri termo-pluviometrici relativi al periodo 1965-1993, attraverso il calcolo del valore medio annuale (**Tabella7.11**) e mensile (**Tabella7.12**) per le stazioni di Vasto, Scerni, Lanciano, Montazzoli e Palena, rappresentative dell'intero territorio consortile.

L'analisi dei dati mette in evidenza come, procedendo verso le aree interne, il clima da temperato caldo, tipico della fascia costiera, diventi temperato umido ed umido in relazione all'orografia del territorio provinciale. In particolare, nelle località di Scerni e Vasto si verificano condizioni di aridità da maggio ad agosto; il periodo di aridità si riduce, procedendo verso l'interno, a Lanciano (maggio-luglio), a Montazzoli è limitato al mese di luglio, fino ad annullarsi nel territorio di Palena.

Tabella 7.11- Indice di De Martonne calcolato su base annua - stazioni rappresentative del Consorzio Sud

Stazione	Valori dell'Indice di De Martonne	Classificazione climatica di De Martonne			
Vasto	25	Temperato-caldo			
Lanciano	32	Temperato umido			
Scerni	29	Temperato-caldo			
Montazzoli	39	Temperato-umido			
Palena	52	Umido			

Fonte: Elaborazione C.O.T.I.R. su dati forniti dal CAR- A.R.S.-S.A. e dal Servizio Idrografico e Mareografico di Pescara

Tabella 7.12 - Indice di De Martonne mensile calcolato per le stazioni rappresentative del Consorzio Sud

Mese	Scerni	Vasto	Lanciano	Montazzoli	Palena
Gennaio	42	35	54	68	79
Febbraio	40	32	44	68	78
Marzo	37	31	42	58	67
Aprile	35	26	35	48	63
Maggio	18	16	16	28	39
Giugno	16	12	20	25	33
Luglio	12	12	17	17	24
Agosto	18	15	21	24	24
Settembre	27	26	31	28	38
Ottobre	32	28	37	38	50
Novembre	43	37	48	68	93
Dicembre	58	56	60	75	99

Fonte: Elaborazione C.O.T.I.R. su dati forniti dal CAR- A.R.S.-S.A. e dal Servizio Idrografico e Mareografico di Pescara

A valle dello studio sopra riportato, rimane suffragata la tesi che le aree sensibili al rischio desertificazione in Abruzzo restino prevalentemente quelle costiere.

Tuttavia, va sottolineata l'importanza di estendere ed approfondire la conoscenza delle implicazioni climatiche, ma anche dell'interazione di quest'ultime con i cambiamenti di uso del

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

suolo che avvengono nel territorio abruzzese, non solo nell'ambito di pianura costiera, ma anche delle aree più interne (come ad esempio la Piana del Fucino), onde poter meglio delineare e perimetrare vere e proprie aree da monitorare e, sulle quali poter applicare tutta una serie di interventi per mitigare ed arrestare il fenomeno di degrado.

Attualmente, il panorama legislativo italiano in materia è composto da un Decreto di Istituzione del Comitato nazionale per la lotta alla desertificazione, del 1997; una Deliberazione del CIPE n.154/98 e le Linee guida del piano nazionale approvate dal Comitato nazionale il 22 luglio 1999. All'interno di queste ultime, ritorna predominante anche il concetto di protezione/tutela della risorsa idrica con riferimento al D.Lgs. 152/06.

Per una breve sintesi degli interventi e delle misure da adottare in merito a tale problema, si riporta uno stralcio delle "Linee Guida del Programma di Azione Nazionale di lotta alla siccità ed alla desertificazione":

"Nel PAN sono individuati quattro settori di intervento prioritari:

- 1. protezione del suolo (recupero dei suoli degradati per processi di erosione e salinizzazione);
- 2. gestione sostenibile delle risorse idriche;
- 3. riduzione dell'impatto delle attività produttive;
- 4. riequilibrio del territorio.

1. Protezione del suolo

La protezione del suolo delle aree vulnerabili alla desertificazione interessa, in particolare:

- le aree agricole a produzione intensiva e marginale;
- le aree a rischio di erosione accelerata;
- le zone degradate da contaminazione, inquinamento, incendi;
- le aree incolte e abbandonate.

Fra le possibili misure di protezione del suolo le Linee Guida individuano interventi di:

- realizzazione di cartografia pedologica a scala adeguata;
- gestione sostenibile ed ampliamento del patrimonio forestale;
- aggiornamento degli inventari forestali e delle normative di riferimento al fine di allineare la politica forestale italiana con gli impegni assunti in sede europea ed internazionale;
- sviluppo della produzione vivaistica per la diffusione delle specie mediterranee;
- prevenzione e lotta degli incendi;
- protezione di pendii e regimazione delle acque mediante interventi a basso impatto ambientale.

2. Gestione sostenibile delle risorse idriche

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Fra le possibili misure di gestione sostenibile delle risorse idriche, le linee guida individuano interventi di:

- adozione dei piani di tutela delle acque e la definizione del bilancio idrico a livello di bacino idrologico o per aree significative di minore estensione;
- definizione e controllo della domanda idrica (fabbisogno);
- aggiornamento e revisione degli strumenti di controllo e verifica delle autorizzazioni degli scarichi e delle derivazioni al fine di perseguire una migliore protezione dei corpi idrici superficiali e sotterranei;
- miglioramento dell'efficienza della rete di distribuzione idrica per ridurre gli sprechi e le perdite;
- la razionalizzazione delle attività irrigue tramite l'adozione di tecniche di distribuzione efficienti e la corretta programmazione degli interventi irrigui privilegiando le produzioni tipiche mediterranee;
- controllo e razionalizzazione degli emungimenti idrici;
- incentivazione della ricerca sugli usi multipli dell'acqua in aree rurali ed urbane;
- sviluppo del riutilizzo delle acque reflue in agricoltura;
- sviluppo di piani di prevenzione, mitigazione ed adattamento in relazione agli effetti di eventi di siccità;
- raccolta e riutilizzo dell'acqua piovana in nuovi quartieri urbani e ripristino nei centri storici dei sistemi di raccolta andati in disuso.

3. Riduzione dell'impatto delle attività produttive

Fra le possibili misure dell'impatto delle attività produttive, le linee guida individuano interventi di:

- mitigazione degli impatti dei processi produttivi al fine di ridurre il consumo di risorse non rinnovabili;
- attuazione di misure finalizzate all'adozione di sistemi di produzione agricola, zootecnica, forestale in grado di prevenire il degrado fisico, chimico e biologico del suolo;
- incremento dell'impiego della frazione organica dei R.S.U. derivata dalla raccolta differenziata e degli scarti organici di origine agricola per la produzione di compost di qualità;
- controllo della pressione delle attività turistiche sulle aree vulnerabili mediante incentivi alla destagionalizzazione, alla diversificazione dell'offerta e alla riduzione del consumo idrico.

4. Rieguilibrio del territorio

Fra le possibili misure di riequilibrio del territorio, le linee guida individuano interventi di:

recupero dei suoli degradati per processi di erosione, salinizzazione, ecc...;

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

- bonifica e rinaturalizzazione dei siti contaminati, di discariche, di aree minerarie abbandonate;
- ricostruzione del paesaggio ed attuazione di politiche integrate di pianificazione dei sistemi territoriali, in particolare lungo le fasce costiere e per le isole minori;
- incentivazione di attività produttive e turistiche sostenibili in aree marginali collinari e montane;
- rinaturalizzazione e trasformazione ambientale di aree soggette a fenomeni di degrado in ambito urbano e industriale;
- incentivazione all'adozione di piani urbanistici che prevedano l'impiego di tecnologie orientate al ripristino e all'uso appropriato delle risorse naturali;
- riutilizzo delle tecnologie tradizionali e il recupero integrato dei centri storici."

Attualmente, vista la necessità di studi approfonditi per una corretta valutazione del problema e per focalizzare le misure da attuare direttamente sul territorio, l'Università della Basilicata (Desertlinks Project, Prof. Ferrara) ha realizzato un programma informatico per la valutazione dell'Indice di Sensibilità Ambientale per aree locali.

La Sensibilità Ambientale è un indice complesso che può essere usato per ottenere una migliore comprensione dei fattori che causano il rischio desertificazione in una data area. Il diagramma riportato in **Figura 7.1** mostra quali indicatori possono essere utilizzati per il calcolo:

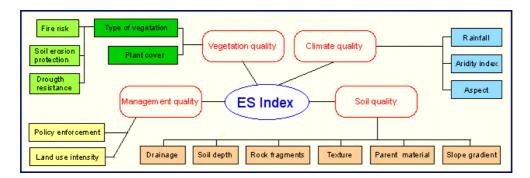


Figura 7.1: Diagramma di calcolo dell'Indice di Sensibilità Ambientale

Tale metodo sperimentale ha lo scopo di adattare le disparate informazioni fisiche e socio economiche con la capacità di influenzare la sensibilità ambientale, in un sistema coerente e capace.

Tale sistema porta così all'individuazione di un'area caratterizzata da una sensibilità ambientale; tale area, qualora abbia un elevato punteggio dell'indice ES, può essere considerata un'entità specifica e delimitata nella quale i fattori ambientali e socio-economici non sono bilanciati, in equilibrio tra loro, o per quel particolare ambiente non vi è uno sviluppo sostenibile.

Il metodo sopra descritto è stato applicato all'area del Fucino, ove le colture ortive stanno via via diventando sempre più intensive, a fronte di un suolo franco-limoso mediamente profondo

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

ed un clima favorevole, ma con un basso drenaggio. I valori sono stati presi da studi pregressi, dalla letteratura, da fonte LANDSAT TM, dal Corine Land Cover e da dati statistici su base locale.

Il risultato è stato sintetizzato nell'apposita **Tabella7.13**; dal valore dell'indice di sensibilità si evince che l'area del Fucino possiede una media sensibilità ambientale ed è fortemente caratterizzata da un delicato equilibrio tra l'attività umana e l'attività naturale, ove un qualunque cambiamento in uno dei fattori, può portare alla desertificazione.

Tabella 7.13 - Indice di Sensibilità Ambientale della Piana del Fucino

	Quality class	Critical factors %	Quality score	
Vegetation quality	Low	52	1.41	
Soil quality	Medium	23	1.28	
Climate quality	Good	0	1	
Management q.	Low	73	1.73	
	Sensitivity class	Sensitivity Index	Sensitivity score	
ES Index to desertification	Area with medium environmental sensitivity (Fragile)	29	1.33	

Main risk factors of the area are:

The type of vegetation characterised by a very low erosion protection and resistance to drought. Soil poorly drained. Moderate enforcement of the existing policy on environmental protection associated with high land use intensity.

L'attuazione di questo modesto esempio, serve a dimostrare la possibilità di una discretizzazione della sensibilità di un'area alla desertificazione, partendo da fattori fisici e socio-economici. Un'applicazione di maggior dettaglio e calata sulla realtà abruzzese potrebbe portare ad uno strumento utile per una corretta pianificazione degli eventuali interventi da attuare, al fine di salvaguardare il patrimonio delle risorse abruzzesi.

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

7.4 Disciplina delle aree di salvaguardia delle acque superficiali e sotterranee destinate al consumo umano

D.Lgs. 152/06 - PARTE TERZA

Articolo 94 - Disciplina delle aree di salvaguardia delle acque superficiali e sotterranee destinate al consumo umano

- 1. Su proposta delle Autorità d'ambito, le regioni, per mantenere e migliorare le caratteristiche qualitative delle acque superficiali e sotterranee destinate al consumo umano, erogate a terzi mediante impianto di acquedotto che riveste carattere di pubblico interesse, nonché per la tutela dello stato delle risorse, individuano le **aree di salvaguardia** distinte in zone di tutela assoluta e zone di rispetto, nonché, all'interno dei bacini imbriferi e delle aree di ricarica della falda, le zone di protezione.
- 2. Per gli approvvigionamenti diversi da quelli di cui al comma 1, le Autorità competenti impartiscono, caso per caso, le prescrizioni necessarie per la conservazione e la tutela della risorsa e per il controllo delle caratteristiche qualitative delle acque destinate al consumo umano.
- 3. La **zona di tutela assoluta** è costituita dall'area immediatamente circostante le captazioni o derivazioni: essa, in caso di acque sotterranee e, ove possibile, per le acque superficiali, deve avere un'estensione di almeno dieci metri di raggio dal punto di captazione, deve essere adeguatamente protetta e dev'essere adibita esclusivamente a opere di captazione o presa e ad infrastrutture di servizio.
- 4. La **zona di rispetto** è costituita dalla porzione di territorio circostante la zona di tutela assoluta da sottoporre a vincoli e destinazioni d'uso tali da tutelare qualitativamente e quantitativamente la risorsa idrica captata e può essere suddivisa in **zona di rispetto ristretta** e **zona di rispetto allargata**, in relazione alla tipologia dell'opera di presa o captazione e alla situazione locale di vulnerabilità e rischio della risorsa. In particolare, nella zona di rispetto sono vietati l'insediamento dei seguenti centri di pericolo e lo svolgimento delle seguenti attività:
- a) dispersione di fanghi e acque reflue, anche se depurati;
- b) accumulo di concimi chimici, fertilizzanti o pesticidi;
- c) spandimento di concimi chimici, fertilizzanti o pesticidi, salvo che l'impiego di tali sostanze sia effettuato sulla base delle indicazioni di uno specifico piano di utilizzazione che tenga conto della natura dei suoli, delle colture compatibili, delle tecniche agronomiche impiegate e della vulnerabilità delle risorse idriche;
- d) dispersione nel sottosuolo di acque meteoriche provenienti da piazzali e strade;
- e) aree cimiteriali
- f) apertura di cave che possono essere in connessione con la falda;
- g) apertura di pozzi ad eccezione di quelli che estraggono acque destinate al consumo umano e di quelli finalizzati alla variazione dell'estrazione ed alla protezione delle caratteristiche quali-quantitative della risorsa idrica;
- h) gestione di rifiuti;
- i) stoccaggio di prodotti ovvero sostanze chimiche pericolose e sostanze radioattive;
- I) centri di raccolta, demolizione e rottamazione di autoveicoli;
- m) pozzi perdenti;
- n) pascolo e stabulazione di bestiame che ecceda i 170 chilogrammi per ettaro di azoto presente negli effluenti, al netto delle perdite di stoccaggio e distribuzione. E' comunque vietata la stabulazione di bestiame nella zona di rispetto ristretta.
- 5. Per gli insediamenti o le attività di cui al comma 4, preesistenti, ove possibile, e comunque ad eccezione delle aree cimiteriali, sono adottate le misure per il loro allontanamento; in ogni caso deve essere garantita la loro messa in sicurezza. Entro centottanta giorni dalla data di entrata in vigore della parte terza del presente decreto le regioni e le province autonome disciplinano, all'interno delle zone di rispetto, le seguenti strutture o attività:
- a) fognature;
- b) edilizia residenziale e relative opere di urbanizzazione;
- c) opere viarie, ferroviarie e in genere infrastrutture di servizio;
- d) pratiche agronomiche e contenuti dei piani di utilizzazione di cui alla lettera c) del comma 4.
- 6. In assenza dell'individuazione da parte delle regioni o delle province autonome della zona di rispetto ai sensi del comma 1, la medesima ha un'estensione di 200 metri di raggio rispetto al punto di captazione o di derivazione.
- 7. Le **zone di protezione** devono essere delimitate secondo le indicazioni delle regioni o delle province autonome per assicurare la protezione del patrimonio idrico. In esse si possono adottare misure relative alla destinazione del

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

territorio interessato, limitazioni e prescrizioni per gli insediamenti civili, produttivi, turistici, agro-forestali e zootecnici da inserirsi negli strumenti urbanistici comunali, provinciali, regionali, sia generali sia di settore.

- 8. Ai fini della protezione delle acque sotterranee, anche di quelle non ancora utilizzate per l'uso umano, le regioni e le province autonome individuano e disciplinano, all'interno delle zone di protezione, le seguenti aree:
- a) aree di ricarica della falda;
- b) emergenze naturali ed artificiali della falda;
- c) zone di riserva.

Considerazioni tecniche sulla prevenzione dell'inquinamento degli acquiferi e delle acque sotterranee (aree di salvaguardia)

La prevenzione dell'inquinamento delle risorse idriche sotterranee e dei relativi acquiferi si ottiene esclusivamente evitandone le cause e, conseguentemente, mediante una corretta utilizzazione del territorio.

Per conseguire questo obiettivo è quindi indispensabile individuare preliminarmente l'area di interesse (di norma coincidente con il bacino sotterraneo alimentatore) di cui bisogna conoscere lo schema di circolazione idrica sotterranea. Successivamente, detta area va suddivisa in più settori a diverso livello di pericolosità denominati *Aree di Salvaguardia*.

L'individuazione delle Aree di Salvaguardia delle opere di captazione di falde idriche e sorgenti, disciplinate dall'art. 94 del D.Lgs. 152/06, ha lo scopo di mantenere e migliorare le caratteristiche qualitative delle acque superficiali e sotterranee destinate al consumo umano erogate mediante acquedotto di pubblico interesse, nonché di tutelare lo stato delle risorse idriche in generale (comprese, quindi, quelle non ancora captate e quelle riconosciute come minerali).

Nel D.Lgs. 152/06 e nel successivo "accordo 12 dicembre 2002" (Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003), le Aree di Salvaguardia sono state distinte in *Zona di Tutela Assoluta, Zone di Rispetto* (*Ristretta, Allargata* e *Aggiuntive*), *Zona di Protezione* ed eventuali *Zone di Riserva*. In molti casi, è indispensabile istituire anche *Zone di Rispetto* e/o *Zone di Protezione ad efficacia progressiva* (corrispondenti alle *Zone di Rispetto ad evoluzione progressiva*, in Celico F., 1998), per differenziarle da quelle *ad efficacia immediata* previste dal D.Lgs. 152/06. In alcune situazioni particolari, può essere utile delimitare anche una *Zona di Sicurezza* (Celico P., 2002).

Per <u>Zona di Tutela Assoluta</u> si intende l'Area di Salvaguardia (del raggio di almeno dieci metri e possibilmente recintata) posta immediatamente a ridosso delle opere di captazione o di derivazione ed in genere adibita esclusivamente alla gestione delle stesse opere e delle infrastrutture di servizio (da D.Lgs. 152/06 e da accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003; modificata).

Per <u>Zone di Rispetto</u>, si intendono le Aree di Salvaguardia in cui vengono imposti vincoli territoriali generalmente molto restrittivi, o perché sono poste al contorno della Zona di Tutela Assoluta, o perché, pur essendo poste a distanza dalle opere di captazione o di derivazione,

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

sono ad esse collegate da percorsi preferenziali utilizzati da acque a deflusso veloce. Esse possono essere distinte in *Zona di Rispetto Ristretta* e *Zona di Rispetto Allargata*, "*in relazione alla tipologia dell'opera di presa o captazione ed alla situazione locale di vulnerabilità e rischio della risorsa*" (comma 4 dell'art. 94 del D.Lgs. 152/06), oltre che in *Zone di Rispetto Aggiuntive* (allegato 3, titolo I, parte B, punto 6 dell'accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003).

Per *Zona di Rispetto Ristretta*, si intende l'Area di Salvaguardia, generalmente posta a ridosso della Zona di Tutela Assoluta, a cui vengono di norma imposti vincoli territoriali molto restrittivi.

Per Zona di Rispetto Allargata, si intende l'Area di Salvaguardia, generalmente posta a ridosso della Zona di Rispetto Ristretta, a cui vengono di norma imposti, in relazione a quest'ultima, vincoli territoriali meno restrittivi.

Per *Zone di Rispetto Aggiuntive* (corrispondenti alle *Zone di Rispetto Lontane*, in Celico F., 1998) si intendono le Aree di Salvaguardia che, pur se poste a distanza dalle opere di captazione o di derivazione, sono generalmente soggette a vincoli territoriali molto restrittivi, essendo ad esse collegate da percorsi preferenziali (fessure beanti, canali carsici, ecc.) attraversati da acque a deflusso veloce. Sono previste per gli acquiferi fessurati, in generale (allegato 3, titolo I, parte B, punto 6 dell'accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003).

Le *Zone di Rispetto* si dicono in toto o in parte *ad efficacia immediata* quando possono trovare subito applicazione i vincoli territoriali necessari per la prevenzione dei fenomeni di inquinamento, interessando territori a bassa o nulla antropizzazione.

Le Zone di Rispetto si dicono in toto o in parte ad efficacia progressiva (corrispondenti alle Zone di Rispetto ad efficacia limitata, in Civita 1988 ed alle Zone di Rispetto ad evoluzione progressiva, in Celico F., 1998) quando i vincoli territoriali necessari per prevenire i fenomeni di inquinamento trovano immediata applicazione per le nuove attività, mentre vengono resi gradualmente operativi per quelle già esistenti; in questo caso vengono interessati territori già antropizzati, all'interno dei quali bisogna incidere sulle attività antropiche in atto, facendo attenzione a mantenere un giusto equilibrio tra necessità socio-economiche dei luoghi ed esigenze di tutela delle risorse idriche sotterranee.

Per <u>Zona di Protezione</u> si intende l'Area di Salvaguardia, immediatamente circostante alle Zone di Rispetto, i cui limiti esterni coincidono preferibilmente con quelli dell'intero bacino di alimentazione della falda ed a cui possono essere imposti vincoli territoriali relativamente meno restrittivi di quelli delle Zone di Rispetto. Per bacino si intendono l'area nella quale avviene l'infiltrazione diretta delle acque meteoriche, le eventuali aree di alimentazione indiretta e quelle di contatto con i corpi idrici superficiali dai quali le acque sotterranee traggono eventualmente alimentazione (Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003; modificata).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

La <u>Zona di Protezione</u> può essere anch'essa, in toto o in parte, <u>ad efficacia immediata</u> o <u>ad efficacia progressiva</u> (quest'ultima corrispondente alla <u>Zona di Protezione ad evoluzione progressiva</u>, in Celico F., 1998).

Per <u>Zona di Riserva</u> si intende il territorio che, interessato da risorse idriche pregiate, può essere delimitato e gestito per preservarne nel tempo la quantità e la qualità, anche ai fini di un loro possibile utilizzo, con particolare riferimento a quelle dotate di caratteristiche di potabilità (Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003; modificata).

Per <u>Zona di Sicurezza</u> (anch'essa non prevista dal D.Lgs. 152/06) si intende un'area, immediatamente circostante alla zona di protezione e/o alla zona di riserva, a cui non vengono imposti vincoli territoriali ma che viene segnalata al fine di evidenziare l'adiacenza ad un'area protetta potenzialmente soggetta ad ampliamento (Celico P., 2002).

Le aree di salvaguardia ed i relativi vincoli territoriali restano in vigore anche nei casi in cui le opere di captazione risultino temporaneamente disattivate. Le loro delimitazioni vanno verificate almeno ogni 10 anni ed eventualmente revisionate, qualora il corpo idrico sia stato interessato da variazioni quali-quantitative (dovute sia a fattori naturali sia a fattori antropici) o ci sia stato un avanzamento delle conoscenze tecnico-scientifiche (accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003).

Tolto il riquadro verde

Considerazioni tecniche sulla protezione degli acquiferi e delle acque sotterranee dall'inquinamento (protezione statica e dinamica)

La protezione degli acquiferi (e, conseguentemente, delle acque sotterranee) dall'inquinamento può essere effettuata in vari modi, riconducibili ad interventi sul territorio e/o sulle opere di captazione. I tipi di intervento possono essere annoverati in due gruppi, uno detto di *protezione statica* e l'altro di *protezione dinamica*.

Alle opere di captazione di modesta entità si applica, di norma, la sola protezione statica, mentre, per le captazioni di rilevante entità o interesse, la protezione statica è associata alla protezione dinamica (Allegato 2, titolo II, punto 2 dell'accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti Stato - Regioni - Province Autonome, 2003).

Per *protezione statica* si intende la protezione della risorsa idrica mediante la definizione di *Aree di Salvaguardia*, all'interno delle quali vengono posti divieti, vincoli e regolamentazioni finalizzati alla prevenzione del degrado quali-quantitativo delle acque in afflusso alle opere di captazione, eventualmente con l'integrazione di opere strutturali in grado di minimizzare o eliminare i problemi di incompatibilità tra uso del territorio e qualità delle risorse idriche (da Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003; modificata).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Per *protezione dinamica* si intende la protezione della risorsa idrica mediante la gestione, in termini dinamici, di determinate opere di captazione e/o mediante la gestione di un sistema di monitoraggio delle acque in afflusso alle stesse opere, che sia in grado di verificarne periodicamente i principali parametri quantitativi e qualitativi consentendo, con un sufficiente tempo di sicurezza, la conoscenza di eventuali loro variazioni significative (da Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003; modificata). La sua utilizzazione, che è sempre in associazione a quella statica, è di norma riservata alle "captazioni di rilevante entità o interesse", per una loro "tutela più efficace" (allegato 2, titolo II, punto 2 dell'accordo 12 dicembre 2002 della Conferenza Permanente per i Rapporti tra lo Stato, le Regioni e le Province Autonome, 2003).

La protezione dinamica viene di norma effettuata mediante:

- monitoraggio delle sostanze inquinanti;
- opere di captazione dinamica;
- opere di captazione integrate;
- misure di emergenza idrica;
- piani di approvvigionamento idrico alternativo.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

SERVIZIO QUALITA' DELLE ACQUE

7.5 Altre aree richiedenti specifiche misure di prevenzione all'inquinamento e di risanamento

7.5.1 Aree ad elevata protezione

La Direttiva 2000/60/CE in riferimento alla protezione delle acque superficiali interne, delle acque di transizione, delle acque costiere e sotterranee istituisce (art. 6 ed Allegato IV) il registro delle aree protette comprendente diversi tipi di aree protette³⁶ (**Tabella7.15**) tra le quali le aree designate per la protezione degli habitat e delle specie, nelle quali mantenere o migliorare lo stato delle acque è importante per la loro protezione, compresi i siti pertinenti della rete Natura 2000 istituiti a norma della Direttiva 92/43/CEE e della Direttiva 79/409/CEE. Al fine di dare una stima, seppur qualitativa, del grado di protezione afferente alle aree di particolare valenza naturalistica e pertanto oggetto di protezione elevata, nel presente paragrafo (facendo uso di un applicativo informatico), sono state poste in relazione le aree protette con i bacini idrografici/corsi d'acqua per i quali si disponeva del dato di qualità ambientale.

Lo stesso dato di qualità ambientale è stato poi correlato al grado di protezione (**Tabella**) che è direttamente proporzionale al giudizio di qualità ambientale, pertanto la finalità è stata quella di ricercare le aree maggiormente sfavorite (grado di protezione basso).

Tabella 7.15 – Grado di protezione

S.A.C.A.	Grado di protezione
elevato	FLEVATO
buono	ELEVATO
sufficiente	MEDIO
scadente	DACCO
pessimo	BASSO

Tabella 7.14 – Aree Protette

Tipologia	Denominazione
Parco	P. N. N. Gran Sasso Monti della Laga
	P. N. R. Sirente Velino
	P. N. N. Maiella
	P. N. N. d'Abruzzo Lazio e Molise

³⁶ In questa sede sono state considerate le aree protette quali parchi, riserve e SIC; per l'identificazione ed ubicazione delle "Zone di Protezione Speciale" (ZPS) si rimanda al sito internet del Ministero dell'Ambiente e della Tutela del Territorio e del Mare, area "Conservazione della Natura" (www2.minambiente.it/Sito/settori_azione/scn/rete_natura2000/elenco_cartografie/zps.asp).

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

REGIONE ABRUZZO

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

В	Lecceta litoranea di Torino di Sangro Bosco di Don Venanzio Cascate del Verde Punta Aderci
С	Cascate del Verde Punta Aderci
	Punta Aderci
P	
S	Sorgenti del Pescara
L	ago di Serranella
0	Gole di S. Venanzio
^	Monte Salviano
Riserva naturale regionale G	Gole del Sagittario
N	Monte Genzana e Alto Gizio
Z	Zompo Lo Schioppo
С	Calanchi di Atri
С	Castel Cerreto
Р	Pineta dannunziana
L	ago di Penne
0	Grotte di Pietrasecca
A	Abetina di Rosello
R	R.N.O. Colle di Liccio
R	R.N.O. dell'Orfento I e II
R	R.N.O. Piana Grande della Majelletta
R	R.N.O. Fara San Martino - Palombaro
R	R.N.O. Monte Velino
Riserva naturale orientata	R.N.O. Quarto Santa Chiara
R	R.N.O. Monte Rotondo
R	R.N.O. Feudo Intramonti
R	R.N.O. Pineta di Santa Filomena
R	R.N.O. Lama Bianca di S. Eufemia a Maiella
R	R.N.O. Feudo Ugni
Riserva naturale zoologica R	R.N. Zoologica Lago Pantaniello
Riserva naturale statale R	R.N. di popolamento animale Lago di Campotosto
Р	P.T.A. Sorgenti del Vera
Р	P.T.A. Sorgenti Solfuree del Lavino
Р	P.T.A. dell'Annunziata
Parco Territoriale Attrezzato P	P.T.A. del Fiume Vomano
Р	P.T.A. di Vicoli
Р	P.T.A. del Fiume Fiumetto
P	P.T.A. di Città Sant'Angelo

4

REGIONE ABRUZZO

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tipologia	Denominazione
	Montagne Gemelle (dei Fiori e di Campli)
	Gole del Salinello
	Pietralta - Valle Castellana
	Bosco della Martese
	Area sommitale della Laga
	Fiume Tordino (medio corso)
	Fiume Vomano (da Cusciano a Villa Vomano)
	Faggete di Monte di Mezzo
	Calanchi di Atri
	Altipiani e Lago di Campotosto
	Valli versante Sett. Gran Sasso: Nerito e Codaro Campiglione
	Valle del Rio Arno - Venacquaro
	Fiume Mavone
	Valle del Chiarino
	Prati di Tivo
	Monte Corvo - Pizzo Intermesoli
	Valle dell'Inferno - Macchia di San Pietro
	Corno Grande e Corno Piccolo (Gran Sasso)
Sito di importanza comunitaria	Dorsale del Monte Franco a Passo Portella
	Macchialunga di Cagnano Amiterno - Piano Cascina e Palarzano
	Anfiteatro di Campo Pericoli
	Dorsale Brancastello - Prena - Camicia
	Campo Imperatore e Monte Cristo
	Valle d'Angri e Vallone d'Angora
	Monte Calvo
	Monte Bolza (Castel del Monte)
	Val Voltigno
	Calanchi di Bucchianico (Ripe dello Spagnolo)
	Macchiozze di San Vito e Vallone San Giacomo (Capestrano)
	Rupe di Turrivalignani e Fiume Pescara
	Fosso delle Farfalle
	Sorgenti e primo tratto del Fiume Tirino
	Monte Picca - Monte di Roccatagliata
	Valle dell'Orfento e Valle dell'Orta
	Lecceta litoranea di Torino di Sangro e Foce Fiume Sangro
	Fonte di Papa
	Faggete Val di Foro

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tipologia	Denominazione
	Gole di Popoli (Morrone)
	Piano carsico dell'Anatella e Prati di Rovere
	Boschi ripariali del Fiume Osento
	Piani di Pezza e Colle dell'Orso
	Murolungo - Vallone di Teve - M.Rozza
	Vallone di S.Spirito (Roccamorice)
	Bosco di Mozzagrogna
	Vallone di Bocca di Valle
	Punta Aderci - Punta della Penna
	Foreste demaniali La Fossa - M.Rotondo
	Fiumi Giardino - Sagittario - Aterno - Sorgenti del Pescara
	Valle Majelama e del Bicchero
	Settori altitudinali del M.Velino
	Valloni meridionali del M.Velino
	Grotte di Pietrasecca
	Settori altitudinale della Maiella
	Valloni della Maiella orientale
	Montagna del Morrone (M.Le Mucchia)
	Gole di San Vananzio
	Adiaccio della Chiesa - Valle Cupa
	Lecceta di Casoli e Bosco di Colleforeste
	Bosco di Oricola
	M.Midia - M.Faito - M.Fontecellese - Colle della
	Ginepreti a Juniperus Macrocarpa e Gole del Torrente Rio Secco
	Monte di Pacentro - Monte Mileto
	Marina di Vasto
	Lecceta d'Isca d'Archi
	Monte Tarì - Valle di Coccia
	Monte Pallano
	Fiume Vella - Passo San Leonardo
	Gessi di Gessopalena
	Colle del Rascito
	Serra Secca - Cima di Vallevona
	Monte Arunzo e Monte Arezzo
	Monte Dogana - M.Padiglione - Cesa Cotta
	Fiume Trigno (medio e basso corso)
	Monte Salviano

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tipologia	Denominazione
	Monte Sorbo (M.ti Frentani)
	Monna Rosa - Monte Viperella
	Monte Genzana
	Gessi di Lentella
	Fiume Treste
	Porrara - Fiume Aventino
	Gole del Sagittario
	Bosco Paganello (Montenerodo)
	Monte Freddo (M.ti Frentani)
	Monte Rotella
	Pizzalto - Bosco di S.Antonio
	Monti Pizi - Monte Secine
	Monte Labbrone - Monte Meria
	Gola Macrana - M. Turchio - Vallone di Lecce
	Valle di Amplero - M.Annamunna - Vallelonga
	Faggete versante N/E Montagna Grande
	Quarti della Maiella
	Monte Marsicano e Terratta
	Lago di Scanno ed emissari
	Cascata ed alto corso del Rio Verde (Borrello)
	Monte Viglio - Zompo lo Schioppo - Pizzo Deta
	Ara dei Merli - Valle Caprara
	Valle di Corte - Schiappito - Terraegna
	Boschi fra Civita d'Antino e Monte Cornacchia
	Chiarano - Sparvera
	Abetina di Castiglione Messer Marino
	Abetina di Rosello e Gole del Torrente Turcano (M.ti Frentani)
	Bosco Montagna e Bosco Carunchino (M.ti Frentani)
	Piano Carsico di Templo
	Feudo Intramonti - M.Godi - Ferroio di Scanno
	Passo Godi
	Faggete dell'Alta Vallelonga
	Serra di Rocca Chiarano - M.Greco
	Faggete della Conca di Pescasseroli
	Piano carsico tra Pescasseroli e Opi
	Cerrete di Monte Pagano e Feudozzo
	Valle dello Scerto - Aia Santilli

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tipologia	Denominazione
	Val Fondillo - M.Amaro - Dubbio
	Pantano Zittola
	Lago di Barrea
	Fiume Sangro tra Barrea e Scontrone
	Camosciara - M.Petroso - M.Meta
	Faggete di Val di Rose a Campitelli
	Monte Cagno - Monte Ocre
	Doline di Ocre
	Bosco di Cerasolo - M.Puzzillo
	Altopiano delle Rocche
	Campo Felice
	Valle Cordora - Piano Iano
	Faggete del Versante settentrionale del Sirente
	Prati del Sirente
	Crinale del M.Sirente
	Serra e Gole di Celano - Valle d'Arano
Zona umida	Lago di Barrea

L'individuazione delle aree protette è riportata nell'allegato cartografico **"Carta delle Aree Protette"**, in scala 1:250.000, Tavola 5-5.

L'elenco delle aree S.I.C. considerato nella redazione del presente Piano, non tiene conto dell'aggiornamento degli stessi approvato con D.M. 30 marzo 2009. Si precisa, comunque, che tale aggiornamento non ha incidenza sulle finalità del Piano e sulla sua attuazione in quanto non ha apportato variazioni sostanziali nell'estenzione delle aree interessate dalla perimetrazione ma è consistita in accorpamenti di S.I.C. preesistenti.

E' stato verificato che la maggior parte dei Parchi e delle Riserve (ed anche alcuni SIC) sono ubicati in corrispondenza dei tratti montuosi del territorio regionale e coincidono in larga parte con i tratti a monte dei corsi d'acqua, i quali dal monitoraggio risultano essere prevalentemente di qualità ambientale (SACA) buona e/o elevata.

Invece, per le aree protette ubicate lungo i tratti medi e bassi dei corsi d'acqua, si è scelto di prendere a riferimento il valore di qualità ambientale della stazione posizionata subito a monte (ove possibile) dell'area protetta o ricadente all'interno della stessa. Le aree elencate in **Tabella7.16** fanno riferimento ai dati di qualità ambientale del monitoraggio relativo al 2000-2002.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Tabella 7.16 – Aree Protette e Qualità Ambientale

Tipo di Area Protetta	Denominazione	S.A.C.A.
Parco Regionale	Velino-Sirente	
Riserva Naturale Regionale	Lago di Penne	
Riserva Naturale Regionale	Cascate del Verde	
Riserva Naturale Regionale	Lago di Serranella	
Riserva Naturale Regionale	Punta Aderci	
Area di particolare interesse regionale	Bosco di Don Venanzio	
SIC	Fiume Tordino (medio corso)	
SIC	Fiume Vomano (da Cusciano a Villa Vomano)	
SIC	Fiume Mavone	
SIC	Calanchi di Atri	
SIC	Rupe di Turrivalignani e F. Pescara	
SIC	Calanchi di Bucchianico	
SIC	Lecceta di Casoli e Bosco di Colle Foreste	
SIC	Bosco di Mozzagrogna	
SIC	Lecceta litoranea di Torino di Sangro e Foce fiume	
SIC	Boschi riparali del F. Osento	
SIC	Abetina di Castiglion Messer Marino	
SIC	F. Treste e Bosco Montagna e Bosco Carunchino (M.ti Frentani)	
SIC	Fiume Trigno medio e basso corso	

Considerando i risultati sopra esposti, le situazioni più delicate si riscontrano nel Parco Regionale del Velino-Sirente (Fucino, Imele, Aterno-Pescara), nel bacino del Sinello (Bosco di Don Venanzio e Abetina di Castiglion Messer Marino), nel bacino del torrente Lebba (Punta Aderci) e nel bacino del Fiume Sangro e Osento ("Lecceta litoranea di Torino di Sangro e Foce fiume" e "Boschi riparali del F. Osento").

Quindi, per tali aree è opportuno prevedere studi di maggior dettaglio al fine di garantire la conservazione e la salvaguardia dello stato ambientale delle aree protette, patrimonio inestimabile della regione Abruzzo.

7.5.2 Aree di particolare valenza ecosistemica

In Abruzzo sono presenti, oltre alle aree ad elevata protezione descritte nel paragrafo precedente, n. 3 oasi gestite dal WWF, descritte in seguito, che presentano un rilevante interesse naturalistico, poiché istituite per la protezione di aree costituenti habitat di specie animali o vegetali rare o in via di estinzione, o in quanto sede di complessi ecosistemi meritevoli di conservazione.

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

1. Oasi del Lago di Serranella: ubicata in provincia di Chieti, nei comuni di Altino, Casoli e Sant'Eusanio del Sangro, si trova all'interno di una zona di riserva naturale regionale. Il Lago di Serranella si è formato a seguito della costruzione di una traversa per scopi irrigui, nel 1981. L'invaso, pur essendo di origine artificiale, è diventato in breve tempo una palude ricca di vita; la sua posizione prossima alla costa adriatica e alla confluenza fra i fiumi Sangro ed Aventino ne hanno fatto una delle aree più importanti per la sosta degli uccelli migratori lungo la rotta adriatica e per la fauna in generale.

Negli ultimi anni, con interventi mirati di ripristino ambientale, si sta ricostituendo la ricchezza di habitat dell'ambiente fluviale con presenza di laghetti, lanche, zone allagate per riportare l'ambiente ed il paesaggio al suo aspetto originario.

La Riserva ha evidenziato una grande ricchezza vegetazionale, dimostrata dalla presenza di numerose associazioni vegetali legate ad ambienti acquatici e con specie talvolta molto rare. La vegetazione più rappresentata è quella palustre con un esteso canneto e con la presenza della rara tifa di Laxmann. Sulle sponde si incontrano ricche fasce di vegetazione ripariale dove si rinvengono l'ontano nero e la farnia.

Per la fauna risulta notevole la ricchezza avifaunistica per l'importanza dell'area sulla rotta migratoria adriatica; oltre 210 specie sono state censite fra le quali il falco pescatore, la cicogna nera, la gru, il mignattaio, il fenicottero, l'airone bianco maggiore e il cormorano. Nel periodo delle migrazioni è possibile osservare un numero elevato di uccelli, in particolare anatre, folaghe e trampolieri.

- 2. Oasi del Lago di Alanno-Piano d'Orta: in provincia di Pescara, l'oasi è occupata dal più vasto canneto a Cannuccia di palude di tutto l'Abruzzo che si estende per oltre 30 ettari soprattutto lungo la sponda sinistra del Fiume Pescara. Quest'area riveste un particolare interesse naturalistico in quanto sono presenti tre biotopi diversi, ma intimamente interconnessi, costituiti dal fiume che forma un invaso, dal canneto e dai rilievi collinari circostanti. All'interno dell'oasi il fiume Pescara riceve le acque del Fiume Orta che scende dalle gole rocciose, situate a meno di 2 Km dal Parco Nazionale della Majella.
 - Oltre al vasto canneto, nelle zone più umide crescono la Tifa, la Mestolaccia, la Salterella e l' Iris psedacorus, simbolo dell'oasi. Decine di volatili di varie specie quali alzavole, moriglioni, gallinelle d'acqua, tuffetti, folaghe si concentrano nell'invaso. Presenze rare come l'Airone rosso, la Nitticora, il Porciglione, il Tarabusino, la Marzaiola, l'Albanella, il Falco di Palude, il Lodolaio, il Pendolino rendono l'Oasi interessante per il birdwatching. Le colline circostanti ospitano la Volpe, il Riccio, la Faina, la Donnola, il Tasso. Numerosi anche qui gli uccelli: il Barbagianni, la Civetta, l'Assiolo, l'Upupa, lo Zigolo nero, lo Strillozzo, le Averle, il Rigogolo. Ricca anche la ittiofauna con cavedani, barbi, anguille e trote.
- 3. **Oasi Foce del Saline:** l'oasi è situata sulla costa abruzzese in provincia di Pescara (Comuni di Montesilvano-Città Sant'Angelo).
 - Si può considerare un'oasi urbana dal momento che è stretta tra due zone densamente urbanizzate e popolate quella di Pescara-Montesilvano a sud e da Città Sant'Angelo-Silvi

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA, PROTEZIONE CIVILE

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

Marina a nord. Rappresenta dunque una delle ultime foci fluviali abruzzesi sulla costa adriatica che ancora ospita una vegetazione semi-naturale.

La vegetazione è costituita prevalentemente da vasto canneto di Cannuccia di Palude.

Per quanto riguarda la fauna l'area è nota per l'abbondanza di uccelli, come varie specie di aironi, varie specie di anatidi e limicoli e passeriformi di canneto; l'oasi è stata infatti istituita a scopi ornitologici.

4

DIREZIONE LAVORI PUBBLICI, CICLO IDRICO INTEGRATO, DIFESA DEL SUOLO E DELLA COSTA,

PROGER S.P.A. ENEL.HYDRO D'APPOLONIA

SERVIZIO QUALITA' DELLE ACQUE

7.5.3 Aree di particolare valenza geologico-paesaggistica

L'Abruzzo possiede un patrimonio naturalistico molto vasto; tuttavia, sebbene un buon numero di siti geologici è già compreso in aree protette, altri risultano fuori dai parchi e/o riserve naturali e pertanto corrono continui rischi di degrado.

In tale comparto saranno presi in considerazione quelli più direttamente connessi alle acque, quindi quelli riguardanti l'idrogeologia (sorgenti importanti per il chimismo delle acque e/o per la circolazione sotterranea), la pedologia (paleosuolo), la geomorfologia (canyon, doline, circhi glaciali, monumenti naturali-geomorfologici) e la geologia (strutture tettoniche e/o metamorfiche importanti).

Una prima proposta di redazione di un inventario dei siti geologici abruzzesi da preservare è stato redatto nel 1999, sulla base dei dati di letteratura e sulla conoscenza del territorio di diversi Autori (Massoli-Novelli R., Agostini S., Burri E. & Petitta M.); da tale elenco si riportano quelli correlati/correlabili con il presente Piano (**Tabella7.17**):

Tabella 7.17 – Aree di particolare valenza geologico-paesaggistica

	Valle dell'Alento (CH), per i calanchi
	Anversa Abruzzi (AQ), per i calanchi
	Balzolo – Pennapiedimonte (CH), archi di roccia calcarea
	Stiffe (AQ), per le cavità carsiche ed affioramento
	Quarto del Barone – S. Chiara (AQ), per le formazioni miste alluvio-carsiche
Siti geomorfologici	Ghiacciaio del Calderone (TE)
	Fondo Femmina Morta (AQ)
	Valcannella (CH), permafrost
	Anfiteatro Murelle (CH)
	Frattura (Lago di Scanno, AQ)
	Caramanico (Valle dell'Orta, PE)
Siti goologisi	Monte La Queglia (anticlinale tettonica, PE)
Siti geologici	Faglia del Parasano, loc. S. Veneziano (sismica, AQ)
Siti idrogeologici	Acque vive (Taranta Peligna, CH)
	Fosso Cavata (TE)
Siti pedologici	Andosoils of Aremogna (Roccaraso, AQ)